Code: 9ABS105

B. Tech I Year (R09) Regular \& Supplementary Examinations, May 2012 MATHEMATICAL METHODS
 (Common to CSE, ECE, EEE, EIE, ECM, E.Con.E, IT \& CSS)

Time: 3 hours
Max Marks: 70
Answer any FIVE questions
All questions carry equal marks
1 (a) Prove that If A and B are square matrices and if A is invertible then matrices $A^{-1} B$ and $B A^{-1}$ have same Eigen values.
(b) Prove that the product of the Eigen values of a matrix A is equal to its determinant.

2 Reduce the quadratic form $q=2 x_{1}{ }^{2}+2 x_{2}{ }^{2}+2 x_{3}{ }^{2}+2 x_{2} x_{3}$ into a canonical form by Orthogonal reduction. Find the index, signature and nature of the quadratic form.

3 (a) Find and approximate value of the real root of $x^{3}-x-1=0$ using the bisection method
(b) Find the root of the Equation $x \log _{10}(x)=1.2$ using false position method.

4 (a) Fit a second degree parabola to the following data:

$\mathrm{x}:$	0	1	2	3	4
$\mathrm{y}:$	1	5	10	22	38

(b)

Evaluate $\int_{0}^{\pi / 2} e^{\sin x} d x$ correct to four decimal places by Simpson's three- eighth rule.
Using modified Euler's method, find an approximate value of y when $x=0.3$, given that $\frac{d y}{d x}=x+y, y(0)=1$.
(a) If $f(x)=|\cos x|$, Expand $f(x)$ as a Fourier series in the interval $(-\pi, \pi)$.
(b) Express $f(x)=\left\{\begin{array}{lll}1 & \text { for } 0 \leq x \leq \pi \\ 0 & \text { for } & x>\pi\end{array}\right.$ as a Fourier sine integral and hence evaluate $\int_{0}^{\infty} \frac{1-\cos (\pi \lambda)}{\lambda} \sin (x \lambda) d \lambda$.

A tightly stretched string with fixed end points $x=0, x=l$ is initially at rest in its equilibrium position. If it is set vibrating by giving to each of its points a velocity $\lambda x(l-x)$, find the Displacement of the string at any distance x from one end at any time t .

8
(a) Find $Z\left\{\frac{1}{n(n+1)}\right\}$.
(b) Use convolution theorem to evaluate $Z^{-1}\left\{\left(\frac{z}{z-a}\right)^{3}\right\}$.

Code: 9ABS105

B. Tech I Year (R09) Regular \& Supplementary Examinations, May 2012 MATHEMATICAL METHODS
 (Common to CSE, ECE, EEE, EIE, ECM, E.Con.E, IT \& CSS)

Time: 3 hours
Max Marks: 70
Answer any FIVE questions
All questions carry equal marks

1

2

8 (a) Define the Z-transform and prove that Z-transform is linear.
(b) Use convolution theorem to evaluate $Z^{-1}\left\{\frac{z^{2}}{(z-4)(z-5)}\right\}$.

Code: 9ABS105

B. Tech I Year (R09) Regular \& Supplementary Examinations, May 2012 MATHEMATICAL METHODS
 (Common to CSE, ECE, EEE, EIE, ECM, E.Con.E, IT \& CSS)

Time: 3 hours
Max Marks: 70
Answer any FIVE questions
All questions carry equal marks

1
(a) Find a Fourier series of $f(x)=x^{3}$ in the interval $(-\pi, \pi)$.
(b) Find the Fourier cosine transform of $f(x)=e^{-a x} \sin a x, a>0$.

A tightly stretched string of length l has its ends fastened at $x=0, x=l$. The mid-point of the string is then Taken to height ' h ' and then released from rest in that position. Find the lateral displacement of a point of The string at time t from the instant of release.
(a) Find Z-transform of (i). $\frac{1}{n}$, (ii). $\frac{1}{(n+1)}$.
(b) Use convolution theorem to evaluate $Z^{-1}\left\{\frac{z^{2}}{(z-1)(z-3)}\right\}$.

Code: 9ABS105

B. Tech I Year (R09) Regular \& Supplementary Examinations, May 2012 MATHEMATICAL METHODS
 (Common to CSE, ECE, EEE, EIE, ECM, E.Con.E, IT \& CSS)

Time: 3 hours
Max Marks: 70
Answer any FIVE questions
All questions carry equal marks *****
1 (a) Prove that the sum of the Eigen values of a matrix is the trace of the matrix.
(b) If λ is the Eigen value of A then prove that the Eigen value of $B=a_{0} A^{2}+a_{1} I$ is $a_{0} \lambda^{2}+a_{1}$ $\lambda+a^{2}$.

2 (a) Prove that the Eigen values of a Hermitian matrix are all real.
(b) Reduce the quadratic form $q=x_{1}{ }^{2}+x_{2}{ }^{2}+x_{3}^{2}+4 x_{1} x_{2}-4 x_{2} x_{3}+6 x_{3} x_{1}$ into a canonical form by diagonalising the matrix of the quadratic form.
(a) Find the real root of $x \log _{10} x=1.2$ correct to five decimal places by using Newton's iterative method.
(b) Given $f(2)=10, f(1)=8, f(0)=5, f(-1)=10$ estimate $f(1 / 2)$ by using Gauss's forward formula.

4 Fit a polynomial of second degree to the data points given in the following table:

$\mathrm{x}:$	0	1.0	2.0
$\mathrm{y}:$	1.0	6.0	17.0

(a) Find a Fourier series of $f(x)=x^{2}$ in the interval $(-\pi, \pi)$. and deduce the value of $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots$.
(b) Find $f(x)$ if its Fourier sine transform is $\frac{s}{1+s^{2}}$.
(a) Find $Z\left(\mathrm{a}^{\mathrm{n}} \cos n \theta\right)$ and $Z\left(a^{n} \sin n \theta\right)$.
(b) Use convolution theorem to evaluate $Z^{-1}\left\{\frac{z^{2}}{(z-a)(z-b)}\right\}$.

