B. Tech I Year (R09) Regular \& Supplementary Examinations, May 2012

MATHEMATICS - I
(Common to all Branches)
Time: 3 hours
Max Marks: 70
Answer any FIVE questions
All questions carry equal marks

1
(a) Solve: $\left(y^{2}-2 x y\right) d x=\left(x^{2}-2 x y\right) d y$.
(b) Solve: $\left(x^{2}-a y\right) d x=\left(a x-y^{2}\right) d y$.

2
(a) Evaluate $\iint r \sin \theta d r d \theta$ over the cardioids $r=a(1+\cos \theta)$ above the initial line.
(b) Evaluate $\int_{-c}^{c} \int_{-b}^{b} \int_{-a}^{a}\left(x^{2}+y^{2}+z^{2}\right) d x d y d z$.

6
(a) Find the Laplace transform of: (i) $t \sin 3 t \cos 2 t$ (ii) $t^{2} e^{-2 t} \cos t$.
(b) Apply Convolution theorem to find $L^{-1}\left\{\frac{1}{s^{2}(s+a)^{2}}\right\}$.

7 (a) Solve the D.E $\frac{d y}{d t}+4 y+5 \int_{0}^{t} y d t=e^{-t}, y(0)=0$. Using Laplace transform.
(b) Using Laplace transform, Evaluate $\int_{0}^{\infty} t^{3} e^{-t} \sin t d t$.

State Stoke's theorem and verify Stoke's theorem for $\bar{F}=\left(x^{2}+y^{2}\right) \boldsymbol{i}-2 x y \boldsymbol{j}$ taken around the rectangle bounded by the lines $x= \pm a, y= \pm b$.

Code: 9ABS104
B. Tech I Year (R09) Regular \& Supplementary Examinations, May 2012

MATHEMATICS - I
(Common to all Branches)
Max Marks: 70
Time: 3 hours
Answer any FIVE questions
All questions carry equal marks
1 (a) A body initially at $80^{\circ} \mathrm{C}$ cools down to $60^{\circ} \mathrm{C}$ in 20 min . The temperature of the air is $40^{\circ} \mathrm{C}$. Find the temperature of the body after 40 min .
(b) The number N of bacteria in a culture grew at a rate proportional to N . The value of N was initially 100 and increased to 332 in one hour. What was the value of N after $1 \frac{1}{2}$ hours.

2
(a) Solve: $\left(D^{2}+D+1\right) y=x^{3}$.
(b) Solve: $\left(D^{2}-3 D+2\right) y=2 x^{2}$.
(a) Find the minimum value of $x^{2}+y^{2}+z^{2}$ given that $x y z=a^{3}$.
(b) Examine the function for extreme values: $f(x, y)=x^{4}+y^{4}-2 x^{2}+4 x y-2 y^{2}(x>0, y>0)$.

4 (a) Find the surface of the solid generated by the revolution of the astroid $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$ about the x-axis.
(b) Find the area of the surface of revolution formed by revolving the loop of the curve $9 a y^{2}=x(3 a-x)^{2}$ about the x-axis.
(a) Find $\iint(x+y)^{2} d x d y$ over the area bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
(b) Change the order of integration in the integral $\int_{-a}^{a} \int_{0}^{\sqrt{a^{2}-y^{2}}} f(x, y) d x d y$.
(a) If $L\{f(t)\}=F(s)$ then prove that $L\left\{\int_{0}^{t} f(t) d t\right\}=\frac{F(s)}{s}$.
(b) Find $L^{-1}\left\{\tan ^{-1}\left(\frac{2}{s^{2}}\right)\right\}$.

7 (a) Using Laplace transform, show that $\int_{0}^{\infty} t^{2} e^{-4 t} \sin 2 t d t=\frac{11}{500}$.
(b) Solve the D.E $y^{\prime \prime}+n^{2} y=a \sin (n t+2), y(0)=0, y^{\prime}(0)=0$ Using Laplace transform.

8 State Stoke's theorem and verify Stoke's theorem for a vector field defined: $\bar{F}=-y^{3} \boldsymbol{i}+\boldsymbol{x}^{3} \boldsymbol{j}$, in the region $x^{2}+y^{2} \leq 1, z=0$.

Time: 3 hours
B. Tech I Year (R09) Regular \& Supplementary Examinations, May 2012

MATHEMATICS - I
(Common to all Branches)

Answer any FIVE questions

All questions carry equal marks
1 (a) Solve the differential equation $(2 x-y+1) d x+(2 y-x-1) d y=0$.
(b) Solve: $(h x+b y+f) d y+(a x+h y+g) d x=0$.

2 (a) Solve: $\left(D^{2}+4\right) y=e^{x}+\sin 2 x+\cos 2 x$.
(b) Solve: $\left(D^{2}-4 D+3\right) y=\sin 3 x \sin 2 x$.

3 (a) Find the shortest distance from origin to the surface $x y z^{2}=2$.
(b) Investigate for the maxima and minima, if any of $x^{3} y^{2}(1-x-y)$.

4 (a) Trace the curve: $x^{3}+y^{3}=3 a x y$.
(b) Trace the curve: $\left(a^{2}+x^{2}\right) y=a^{2} x$.

5
(a) Evaluate $\int_{0}^{1} \int_{0}^{x^{2}} e^{y / x} d y d x$.
(b) Change the order of integration and evaluate $\int_{0}^{4 a} \int_{x^{2} / 4 a}^{2 \sqrt{a x}} d y d x$.

6 (a) If $f(t)$ is a periodic function with period T , prove that $L\{f(t)\}=\frac{1}{1-e^{-s T}} \int_{0}^{T} e^{-s t} f(t) d t$.
(b) Use Heaviside's expansion formula to find $L^{-1}\left\{\frac{1}{s^{3}+1}\right\}$.

7
(a) Find $L\{\sin \sqrt{t}\}$ and Hence Evaluate $L\left\{\frac{\cos \sqrt{t}}{\sqrt{t}}\right\}$.
(b) Solve the D.E. $y^{\prime \prime}+4 y^{\prime}+3 y=e^{-t}, y(0)=1, y^{\prime}(0)=1$. Using L.T.

8 (a) If $r=x \bar{i}+y \bar{j}+z \bar{k}$, show that $\nabla r^{n}=n r^{n-2} \bar{r}$.
(b) Find the works done in moving in a particle in the force field $\bar{F}=\left(3 x^{2}\right) \boldsymbol{i}+(2 z x-y) \boldsymbol{j}+z \boldsymbol{k}$, along (i) the straight line form $(0,0,0)$ to $(2,1,3)$ (ii) the curve defined by $x^{2}=4 y, 3 x^{3}=8 z$ from $x=0$ to $x=2$.
B. Tech I Year (R09) Regular \& Supplementary Examinations, May 2012

MATHEMATICS - I
(Common to all Branches)
Max Marks: 70
Time: 3 hours
Answer any FIVE questions
All questions carry equal marks
1 (a) Find the equation of the system of orthogonal trajectories of the family of curves $\mathrm{r}^{\mathrm{n}} \sin \mathrm{n} \theta=$ a^{n} where a is the parameter.
(b) Find the orthogonal trajectories of the family of curves $\mathrm{r}^{\mathrm{n}}=\mathrm{a}^{\mathrm{n}} \operatorname{cosn} \theta$.

2
(a) Solve: $\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+3 y=e^{2 x}$
(b) Solve: $\left(D^{3}-5 D^{2}+8 D-4\right) y=e^{2 x}$.

3
(a) Expand $x^{2} y+3 y-2$ in powers of $(x-1)$ and $(y+2)$ up to the terms of $3^{\text {rd }}$ degree.
(b) Expand $x^{3}+y^{3}+x y^{2}$ in powers of $(x-1)$ and $(y-2)$ using Taylor's series.

4
(a) Find the radius of curvature at the origin of the curve $y^{2}=\frac{x^{2}(a+x)}{(a-x)}$.
(b) Find the radius of curvature at the origin for the curve $y^{4}+x^{3}+a\left(x^{2}+y^{2}\right)-a^{2} y=0$.
(a) Evaluate $\int_{0}^{3} \int_{1}^{2} x y(1+x+y) d y d x$.
(b) Evaluate the integral by changing the order of integration $\int_{0}^{3} \int_{1}^{\sqrt{4-y}}(\mathrm{x}+\mathrm{y}) d x d y$.
(a) Find the Laplace transform of: (i) $e^{-3 t}(2 \cos 5 t-3 \sin 5 t)$. (ii) $e^{3 t} \sin ^{2} t$.
(b) Find $L^{-1}\left\{\frac{s^{2}}{\left(s^{2}+4\right)\left(s^{2}+9\right)}\right\}$ Using Convolution theorem.

7 (a) Solve the D.E. $y^{\prime \prime}+2 y^{\prime}-3 y=\sin t, y(0)=0, y^{\prime}(0)=0$. Using Laplace transform.
(b) Using Laplace transform, Evaluate $\int_{0}^{\infty} e^{-4 t} \frac{(2 \sin t-3 \sinh t)}{t} d t$.

State Stoke's theorem and verify Stoke's theorem for a vector field defined:
$\bar{F}=(2 x-y) \boldsymbol{i}-y z^{2} \boldsymbol{j}-y^{2} z \boldsymbol{k}$, over the upper half surface of $x^{2}+y^{2}+z^{2}=1$, bounded by its projection on the $x y$-plane.

