

Code: R5 100406

R5

B.Tech I Year (R05) Supplementary Examinations, May 2012

NETWORK ANALYSIS

(Common to ECE, EIE, BME and ECC)

Time: 3 hours

Max Marks: 80

Answer any FIVE questions

All questions carry equal marks

- 1 (a) Define and explain (i) Resistance (ii) Inductance (iii) Graph (iv) Basic cut set matrix.
 - (b) For a given network draw the graph and choose a possible tree. Construct the basic tie set schedule. Write the equations for the branch currents and in terms of link currents and write separately the independent equations.

- 2 (a) Define co-efficient of coupling and derive the expression for co-efficient of coupling.
 - (b) Two coils A and B are connected in series the coils have self inductances L_A and L_B with a mutual inductance M. What is the effective inductance of the series circuit?
- ³ For the circuit shown the switch is closed at t=0, find the values of i_1 , i_2 , $\frac{di_1}{dt}$, $\frac{di_2}{dt}$, $\frac{d^2i_1}{dt^2}$ and $\frac{d^2i_2}{dt^2}$ at t = 0⁺.

Contd. in Page 2

Code: R5 100406

⁴ Find the response of the network shown when the input voltage is (i) unit impulse function $\delta(t)$. (ii) $\vartheta_i(t) = e^{-2t}$

- 5 (a) State and explain maximum power transfer theorem.
 - (b) Draw the dual network for the given circuit and also write down the procedure to obtain dual network. $A_{1}^{R_{1}}$

- 6 (a) Define and obtain hybrid parameters by taking any one example.
 - (b) Obtain short circuit parameters for the given network.

- 7 What is an alternator? Briefly explain the design of alternator.
- 8 (a) Write short notes on constant K high pass filters.
 - (b) Design a low pass filter to have a cutoff at 796 Hz when terminated in a 600 Ω resistance in the T configuration.

R5