

Code: R7412303 R07

IV B.Tech I Semester (R07) Supplementary Examinations, May 2012

DOWNSTREAM PROCESSING

(Biotechnology)

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. Enumerate the common problems associated with fermentation, cell disruption, isolation, concentration, purification and formulation of low value high volume products.
- 2. Discuss important properties of bio-products that are relevant to bio-product separation.
- 3. (a) Explain briefly how membrane solubilization is used to release intracellular products.
 - (b) Explain the working of continuous centrifuge with neat diagram.
- 4. (a) Explain ultra filtration.
 - (b) Discuss about fouling of membranes briefly.
 - (c) What is cross flow filtration? Explain briefly.
- 5. (a) What are the different anti solvent used in the precipitation process and explain briefly about their selection?
 - (b) Write in detail about extraction using aqueous two phase systems.
- 6. (a) A 10^{-6} m diameter particle has measured mobility of 1 x 10^{9} m²/s^v in a 0.005 M aqueous solution of NaCl at 25^{0} C.What is the value of zeta potential ξ . It is given that η (viscosity of the medium) = $0.890 \times 10^{-3} \frac{Ns}{m^{2}}$.
 - (b) Write short notes on SDS Gel electrophoresis.
- 7. (a) Explain in detail about the HPLC.
 - (b) Component A has $A_A = 3.22$ where $A_A = q_A/c_A$. In a chromatograph experiment a small pulse injected. The peak maximum for component A exits at 12.5 minutes while a non-retained tracer (q _{tracer} = 0) exits 2.8 minutes. Component B in the same experiment exits at 15.6 minute. Assume isotherms are linear and molecules are small so that $K_d = 1.0$. What is the value of A_B .
- 8. Taking an example of manufacture of penicillin, explain the problems and requirements of a downstream processing.
