Code: R7420202

R7

B.Tech IV Year II Semester (R07) Advanced Supplementary Examinations June 2012

ADVANCED CONTROL SYSTEMS

(Electrical and Electronics Engineering)

Time: 3 hours

Max Marks: 80

Answer any FIVE questions

All questions carry equal marks

- 1 A feedback system is characterized by the closed loop transfer function: $T(s) = \frac{s^2 + 3s + 3}{s^3 + 2s^2 + 3s + 1}$. Construct a state model for the T(s) and also give the block diagram representation for the same.
- 2 (a) What is duality property? State and prove principle of duality.
 - (b) Explain how linear time invariant system transform into controllable canonical form.
- 3 What is dead-zone? Derive the describing function of dead-zone nonlinearity.
- A linear second order servo is described by the equation $\ddot{e}+2\xi w_n \dot{e} + w_n^r e = 0$, where $\xi = 0.15$, $w_n = 1$ rad/sec, e (0) = 1.5 and e (0) = 0. Determine the singular point. Construct the phase trajectory, using the method of isoclines.
- 5 Determine the stability of the system described by the equation: $\dot{X} = A \cdot X$. where, $A = \begin{bmatrix} -1 & -2 \\ 1 & -4 \end{bmatrix}$ using lypunov's direct method.
- 6 (a) Explain the different methods of determination of observer gain matrix.
 - (b) Consider the system described by the state model $\dot{X} = A \cdot x$. Where $A = \begin{bmatrix} -1 & 1 \\ 1 & -2 \end{bmatrix}$ and Y = cx, $c = \begin{bmatrix} 1 & 0 \end{bmatrix}$ obtain the state observer gain matrix. The desired given values for the observer matrix are: $\mu_1 = -5$, $\mu_2 = -5 \cdot$.
- 7 (a) Derive 'Euler-lagrangine' equation.
 - (b) Discuss the application of euler-lagrangine equation.
- 8 (a) Explain minimum time problem.
 - (b) Explain output regulator problem.

www.FirstRanker.com