Code: R7 420204
R7
B.Tech IV Year II Semester (R07) Advanced Supplementary Examinations, June 2012

OPTIMIZATION TECHNIQUES
(Electrical and Electronics Engineering)
Time: 3 hours
Answer any FIVE questions
All questions carry equal marks

1 (a) Write brief notes on formulation of optimization problem.
(b) Enumerate various optimization problems.

2 (a) Discuss on 'necessary and sufficient conditions for an n -variable function $\mathrm{f}(\mathrm{x})$ to have extrema'.
(b) Examine the following function for extreme points. $f(x)=x_{1}{ }^{3}+x_{2}{ }^{3}-3 x_{1} x_{2}$.

3 Solve the following linear programming problem by Lagrangean method.
Maximize $\mathrm{f}(\mathrm{x})=5 x_{1}+3 x_{2}$ subject to $g_{1}(x)=x_{1}+2 x_{2}+x_{3}-6=0$

$$
\begin{aligned}
& g_{2}(x)=3 x_{1}+x_{2}+x_{4}-9=0 \\
& \quad x_{1}, x_{2}, x_{3}, x_{4} \geq 0 .
\end{aligned}
$$

ABC limited has three production shops that supply a product to five warehouses. The cost of production varies from shop to shop and cost of transportation from one shop to warehouse also varies. Each shop has a specific production capacity and each warehouse has certain amount of requirements. The costs of transportation are given below:

Warehouse

	I II		III	IV	V	Supply 100
	6	4	4	7	5	
B	5	6	7	4	8	125
C	3	4	6	3	4	175
Demand	60	80	85	105	70	

The cost of manufacturing the product at different production shops is

Shop	Variable cost	Fixed cost
A	14	7000
B	16	4000
C	15	5000

Find the optimum quantity to be supplied from each shop to different warehouses at the minimum total cost.

Consider the following unimodal, single variable function $f(x)=x^{2}+54 / x$ solve by using quadratic method.
7 Consider the four-variable minimization problem:

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}+2 x_{2}-1\right)^{2}+5\left(x_{3}-x_{4}\right)^{2}+\left(x_{2}-3 x_{3}\right)^{4}+10\left(x_{1}-x_{4}\right)^{4} .
$$

Perform two interactions of Cauchy's method.
8 Write short notes on the following:
(a) Penalty function method.
(b) Computational procedure in dynamic programming.

