II B.Tech I Semester (R07) Supplementary May 2012 Examinations DIGITAL LOGIC DESIGN

(Common to Computer Science \& Engineering, Information Technology and Computer Science \&

 Systems Engineering)Time: 3 hours
Max. Marks: 80

Answer any FIVE questions
 All questions carry equal marks

1. (a) Represent decimal number 8620 in (i) BCD and (ii) Excess -3 code.
(b) Perform the arithmetic operations (+42)+(-13) and (-42)-(-13) in binary using the signed-2'scomplement representation for negative numbers.
(c) Determine the value of base x if $(211)_{\mathrm{x}}=(152)_{8}$.
2. (a) Simplify the following Boolean expressions to a minimum number of literals.
(i) $x^{\prime} y+x y^{\prime}+x y+x^{\prime} y^{\prime}$
(ii) $A^{\prime} B\left(D^{\prime}+C^{\prime} D\right)+B\left(A+A^{\prime} C D\right)$
(b) Convert the following to the other canonical form:
(i) $\quad \mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma(1,3,7)$
(ii) $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Pi(0,1,2,3,4,6,12)$
3. (a) Implement the function F with the following two-level forms: NAND-AND and NOR-OR

$$
F(A, B, C, D)=\Sigma(0,1,2,3,4,8,9,12)
$$

(b) Simplify the following Boolean functions by first finding the essential prime implicates:

$$
\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\Sigma(1,3,4,5,10,11,12,13,14,15)
$$

4. (a) A majority function is generated in a combinational circuit when the output is equal to 1 if the input variables have more 1's than 0's. The output is 0 otherwise. Design a 3-input majority function.
(b) A combinational circuit is defined by the following three Boolean functions. Design the circuit with a decoder and external gates.

$$
\begin{aligned}
& F_{1}=X^{\prime} Y^{\prime} Z^{\prime}+X Z \\
& F_{2}=X^{\prime} Y^{\prime} Z^{\prime}+X^{\prime} Y \\
& F_{3}=X^{\prime} Y^{\prime} Z+X Y .
\end{aligned}
$$

5. (a) Explain the working of a master-slave JK flip flop. State its advantages.
(b) List the procedure to design a clocked sequential circuit.
6. (a) Design a shift register with parallel load that operates according to the following functions table.

Shift	Load	Register Operation
0	0	No change
0	1	Load parallel data
1	X	Shift right

(b) Design a 4-bit synchronous counter with D flip flops.
7. (a) Draw a PLA circuit to implement the logic functions $A^{\prime} B C+A B^{\prime} C+A C^{\prime}$ and $A^{\prime} B^{\prime} C^{\prime}+B C$.
(b) Using ROM, design a combinational circuit which accepts 3 bit number and generates an output binary number equivalent to the square of input number.
8. (a) Explain the difference between
(i) Synchronous and Asynchronous sequential circuits .
(ii) Stable and unstable states.
(b) Draw the logic diagram of product of sums expressions:

$$
Y=\left(x_{1}+x_{2}^{\prime}\right)\left(x_{2}+x_{3}\right)
$$

Show that there is a static- 0 Hazard when x_{1} and x_{3} are equal to zero x_{2} goes from 0 to 1 . Find a way to remove the hazard by adding one more OR gate.

