

www.FirstRanker.com

II B.Tech I Semester (R07) Supplementary May 2012 Examinations MATHEMATICS – II (Common to Civil Engineering and Biotechnology)

Time: 3 hours

2.

Max. Marks: 80

Answer any FIVE questions All questions carry equal marks

- 1. (a) Find the rank of
 - $\begin{bmatrix}
 1 & 4 & 3 & -2 & 1 \\
 -2 & -3 & -1 & 4 & 3 \\
 -1 & 6 & 7 & 2 & 9 \\
 -3 & 3 & 6 & 6 & 12
 \end{bmatrix}$
 - (b) Show that the system of equations 3x + 3y + 2z = 1; x + 2y = 4; 10y + 3z = -2, 2x 3y z = 5 is consistent and hence solve it.

Determine the characteristic roots and vectors of the matrix $\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$

- 3. Reduce the quadratic form of $3x^2 + 5y^2 + 3z^2 2yz + 2zx 2xy$ to the canonical form and specify the matrix of transformation.
- 4. (a) Expand $f(x) = e^{-x}$ as a Fourier series in the internal (-1,1).
 - (b) Find the half range cosine series for the function $f(x) = (x 1)^2$ in the interval 0 < x < 1. Hence show that $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}$
- 5. (a) Form the partial differential equation by eliminating the arbitrary constant of $x^2 + y^2 + (z c)^2 = a^2$
 - (b) Find the differential equation arising from $\phi(x + y + z, x^2 + y^2 + z^2) = 0$.
 - (c) Form a partial differential equation by eliminating the arbitrary functions f(x) and g(x) from z = yf(x) + xg(y).
- 6. (a) Solve $\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial y} + 2u$ in the form u = f(x)g(x). Obtain the solution satisfying u = 0. $\frac{\partial u}{\partial x} = 1 + e^{-3y}$ when x = 0 for all values of y.
 - (b) Find the solution of the wave equation $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$ corresponding to the triangular initial deflection

$$f(x) = \frac{2kx}{l} \text{ where } 0 < x < 1/2$$

= $\frac{2k(l-x)}{l}$ where $l/2 < x < l$

- 7. (a) Using Fourier integral show that $\int_0^\infty \frac{1-\cos\pi\lambda}{\lambda}\sin x\,\lambda d\lambda = \begin{cases} \frac{\pi}{2}, & \text{if } 0 < x < \pi\\ 0, & \text{if } x > \pi \end{cases}$
 - (b) Find the finite Fourier sine and cosine transforms of f(x) defined by f(x) = 2x, where $0 < x < 2 \pi$.
- 8. (a) Find $z \left[\frac{1}{(n+2)(n+3)}\right]$. (b) Find z-transform of $n^2 e^{n\theta}$. (c) Using convolution find $z^{-1}\left[\frac{z^2}{(z-4)(z-5)}\right]$

www.FirstRanker.com