II B.Tech I Semester (R09) Supplementary May 2012 Examinations MATHEMATICS-III

(Common to Electrical \& Electronics Engineering, Electronics \& Instrumentation Engineering, Electronics \& Control Engineering, Electronics \& Communication Engineering and Electronics \& Computer Engineering)

Time: 3 hours
Max. Marks: 70

Answer any FIVE questions

All questions carry equal marks

1. (a) Show that $\beta(\mathrm{m}, \mathrm{n})=\Gamma(\mathrm{m}) \Gamma(\mathrm{n}) / \Gamma(\mathrm{m}+\mathrm{n})$
(b) Show that $\int_{0}^{1} \frac{x^{n}}{\sqrt{1-\mathrm{x}^{2}}} \mathrm{dx}=\frac{2.4 .6 \ldots \ldots \ldots .(\mathrm{n}-1)}{1.3 .5 \ldots \ldots . \mathrm{n}}$
(c) Show that $\int_{0}^{\pi / 2} \sqrt{\tan \theta} d \theta=1 / 2 \Gamma(1 / 4) \Gamma(3 / 4)$
2. (a) Prove that
(a) $P_{n+1}^{1}(x)-P_{n-1}^{1}(x)=(2 n+1) P_{n}(x)$.
(b) $\frac{d}{d x}\left[x^{-n} J_{n}(x)\right]=-x^{-n} J_{n+1}(x)$
(b) When n is an integer? Show that $\mathrm{J}_{\mathrm{n}}(\mathrm{x})=(-1)^{\mathrm{n}} \mathrm{J}_{\mathrm{n}}(\mathrm{x})$.
3. (a) Find the analytic function whose imaginary part is $f(x, y)=x^{3} y-x y^{3}+x y+x+y$ where $\mathrm{z}=\mathrm{x}+\mathrm{iy}$.
(b) Prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|\operatorname{Re} f(z)|^{2}=2\left|f^{1}(z)\right|^{2}$ where $f|z|$ is analytic.
4. (a) Evaluate $\int_{c} \frac{\left(z^{3}-\sin 3 \mathrm{z}\right)}{(\mathrm{z}-\pi / 2)^{3}} \mathrm{dz}$ with $\mathrm{c}:|\mathrm{z}|=2$ using Cauchy's integral formula.
(b) Evaluate $\int_{0,0}^{1,1}\left(3 x^{2}+4 x y+i x^{2}\right) d z$ along $y=x^{2}$.
(c) Evaluate $\int_{\mathrm{c}} \frac{\mathrm{dz}}{\mathrm{e}^{\mathrm{z}}(\mathrm{z}-1)^{3}}$ where $\mathrm{c}:|\mathrm{z}|=2$ using Cauchy's integral theorem.
5. (a) State and prove Laurent's theorem.
(b) Obtain all the Laurent series of the function $\frac{7 \mathrm{z}-2}{(\mathrm{z}+1) \mathrm{z}(\mathrm{z}+2)}$ about $\mathrm{z}=-2$.
6. (a) Find the poles and the residue at each pole of $f(z)=\frac{z}{z^{2}+1}$.
(b) Evaluate $\int_{c} \frac{\mathrm{ze}^{2} \mathrm{dz}}{\left(\mathrm{z}^{2}+9\right)}$ where c is $|\mathrm{z}|=5$, by residue theorem.
7. (a) Show that $\int_{0}^{2 \pi} \frac{d \theta}{a+b \sin \theta}=\frac{2 \pi}{\sqrt{a^{2}-b^{2}}}(a>b>0)$ using residue theorem.
(b) Evaluate by contour integration $\int_{0}^{\infty} \frac{\mathrm{dx}}{1+\mathrm{x}^{2}}$.
8. (a) Find the image of the infinite strip $0<y<1 / 2$ under the transformation $w=1 / z$.
(b) Find the bilinear transformation which maps the points ($-1,0,1$) into the points ($0, i, 3 i$).
