Code: 9A04303

II B.Tech I Semester (R09) Supplementary May 2012 Examinations PROBABILITY THEORY & STOCHASTIC PROCESSES

(Common to Electronics & Instrumentation Engineering, Electronics & Control Engineering and Electronics & Communication Engineering)

Time: 3 hours Max. Marks: 70

Answer any FIVE questions All questions carry equal marks

- 1. (a) State and prove the addition law of probability.
 - (b) At a certain military installation six similar radars are placed in operation. It is known that a radar's probability of failing to operate before 500 hours of "on" time have accumulated is 0.06. What are the probabilities that before 500 hours have elapsed?
 - (a) All will operate (b) All will fail and (c) only one will fail.
- 2. (a) What are the conditions for a random variable to be Gaussian? Explain.
 - (b) Coin A has a probability of head equal to ¼ and probability of tail equal to ¾. Coin B is a fair coin. Each coin is flipped four times. Let the random variable X denote the number of heads resulting from coin A and Y denote the resulting number of heads form coin B.
 - (a) What is the probability that x=y=2.
 - (b) What is the probability that x=y.
 - (c) What is the probability that $x+y \le 5$.
- 3. (a) Discuss about Chebychev's inequality.
 - (b) Find the moment generating function of the random variable having probability density function.

$$f_x(x) = x, \quad 0 \le x \le 1.$$

$$= 2 - x, 1 \le x \le 2.$$

$$= 0 \quad \text{else where}$$

- 4. (a) Let X and Y be two standardized Gaussian random variable. Find the density function of Z=X+Y.
 - (b) Explain the statistical independence of two random variables.
- 5. (a) State and prove the theorems of covariance.
 - (b) If X and Y be independent random variables each having density function.

$$f_x(x) = 2 \cdot e^{-2x}$$
 for $x \ge 0$;
 $= 0$ else where;
 $f_y(y) = 2 e^{-2y}$ for $y \ge 0$
 $= 0$ else where

Find (a) E(X+Y) (b) $E[X^2+Y^2]$.

- 6. (a) Explain different types of random processes.
 - (b) Sample functions in a discrete random process are a constants: that is

$$X(t) = C = constant$$

Where C is a discrete random variable having possible values $C_1=1$, $C_2=2$, and $C_3=3$ occurring with probability 0.6, 0.3 and 0.1 respectively.

- (a) Is x (t) is determination.
- (b) Find the first-order density function of x(t) at any time t.

www.FirstRanker.com

Page 2

Code: 9A04303

R09

- 7. State and prove the properties of auto correlation function.
 - If x(t) is a stationary process having mean =3 and auto-correlation function $R_{xx}(\tau)$ = $9 + 2e^{-|\tau|}$. Find the mean and variance of the random variable.
- State and prove the properties of cross power density spectrum. (a)

The cross spectral density of two random processes
$$x(t)$$
 and $y(t)$ is
$$S_{xy}(w) = 1 + \frac{Jw}{k} \quad \text{for } -k < w < k$$
$$= 0 \quad \text{else where}$$

Where k > 0. Find the cross correlation function between the processes.

MANN FilstRanker.com