

Code: R7 210402

R7

B.Tech II Year I Semester (R07) Supplementary Examinations, May 2012

PROBABILITY THEORY AND STOCHASTIC PROCESSES

(Common to ECE and ECC)

Time: 3 hours

Max Marks: 80

Answer any FIVE questions

All questions carry equal marks

- 1 (a) State and prove Baye's theorem.
 - (b) Two cards are drawn from 52-card deck (the first is not replaced)
 (i) Given the first card is a queen. What is the probability that second is also a queen?
 (ii) Repeat part (i) for the first card a queen and second card a 7.
 (iii) What is the probability that both cards will be the queen?
- 2 (a) Define distribution function and write the properties of distribution function.
 - (b) A random variable X is Gaussian with a_x = 0 and σ_x = 1
 (i) What is the probability that |x|>2
 (ii) What is the probably that x>2.
- 3 (a) A discrete random variable X have values X = -1, 01 and 2 with respective probabilities are 0.1, 0.3, 0.4, and 0.2. X is transformed to $Y = 2-X^2 + X^3/3$. Find the density of Y.
 - (b) Explain about moments about the origin and central moments.
- 4 (a) Write a short notes on joint characteristic functions.
 (b) Find the f_x (x) and f_y (y), when the joint density function is given by F_{xy}(x,y) = U (x) U (y) xe^{-x(y-1)}.
- 5 (a) Derive the relationship between power spectrum and autocorrelation functions.
 - (b) Write the properties of power density spectrum.
- 6 (a) What are the differences between determinate and non determinate random process? Explain each with an example.
 - (b) The auto correlation function, for a stationary ergodic process with no periodic components, is $R_{xx}(T)) = 25 + \frac{4}{1+6T^{2}}$ Find the mean and variance of the process X (t).
- 7 (a) State and prove the properties of cross correlation function.
 - (b) A random process is defined as X (f) = A coswt, where w is constant and A is a uniform random variable over (0, 1). Find the autocorrelation and covariance of X (t).
- 8 (a) Derive the expression for the power spectral density of input and output of a linear system.
 - (b) Prove that $|R_{xy}(\mathsf{T})| \le \sqrt{R_{xx}(0) R_{yy}(0)}$.
