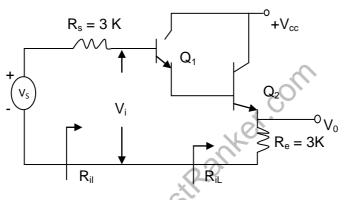


1


II B. Tech II Semester (R09) Regular & Supplementary Examinations, April/May 2012 **ELECTRONIC CIRCUIT ANALYSIS** (Common to EIE, E. Con. E & ECE)

Time: 3 hours

Max Marks: 70

Answer any FIVE questions All questions carry equal marks

- 1 (a) Draw the circuit of an emitter follower and its equivalent circuit. List out its characteristics. (b) The h-parameters of the transistor used in CE amplifier are $h_{fe} = 50$, $h_{ie} = 1.1K\Omega$, $h_{re} = 2.5 \times 10^{-4}$, $h_{oe} = 24 \mu$ A/V. Find out current gain and voltage gain with and without source resistance, input and output impedances, given that $R_{L} = 10$ K and $R_{s} = 1$ K.
- 2 (a) Draw the circuit diagram of cascade amplifier with and without biasing circuit. What are the advantages of this?
 - (b) For the circuit shown in figure, calculate R_i , A_i , A_v and R_o . Assume $h_{ie} = 1.1$ K, $h_{fe} = 50$, $h_{re} = 2.5 \times 10^{-4}$, $h_{oe} = 25 \,\mu$ A/v.

- 3 (a) Draw hybrid π model for a transistor in the CE configuration and explain the significance of every component in this model.
 - (b) A HF amplifier uses a transistor which is driven from a source with $R_s = 1$ K. Calculate value voltage gain, gain bandwidth product, upper 3 dB cut off frequency f_H , if $R_L = 0$ and $R_L = 2$ K. Typical values for hybrid $-\pi$ parameters are: $r_{b'e} = 1$ K, $rbb^1 = 100$ ohms, $c_e = 100$ PF. $C_c = 3$ PF and $g_m = 50$ mA/v.
- 4 (a) Discuss using the concept of a load line superimposed on the transistor characteristics, how a simple common source circuit can amplify a time varying signal.
 - (b) Determine the small signal voltage gain and input and output resistances of a common source amplifier. For the circuit shown in figure the parameters are: $V_{DD} = 10 \text{ V}$, $R_1 = 70.9 \text{ K}\Omega$, $R_2 = 29.1 \text{ K}\Omega$ and $R_D = 5 \text{ K}\Omega$. The transistor parameters are: $V_{TN} = 1.5 \text{ V}$, $K_n = 0.5 \text{ mA/V}^2$ and $\lambda = 0.01 \text{ V}^{-1}$. Assume $R_{si} = 4 \text{ K}\Omega$. See figure (no.4) in the next page.

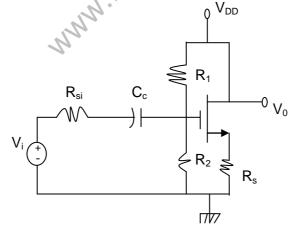
Contd. in Page 2

- 5 (a) Discuss the effects of negative feedback on frequency response of an amplifier.
 - (b) An amplifier with an open loop voltage gain of 1000 delivers 10 W of power output at 10% harmonic distortion when input is 10 mV. If 40 dB negative feedback is applied and output power is to remain at 10 W, determine required input signal V_s and second harmonic distortion with feedback.
- 6 (a) What type of feedback is employed in oscillators and what are the advantages? Discuss the conditions for sustained oscillations.
 - (b) Discuss and explain the basic circuit of an LC oscillator and derive the condition for the oscillations.
 - (c) A crystal has I = 0.1 H, C = 0.01 PF, R $\pm \Omega$ tablet C M = 1 PF. Find the series resonance and Q-factor.
- 7 (a) Draw a practical circuit of a complimentary symmetry push pull amplifier circuit. Explain its function.
 - (b) State the expression relating the total output power 'P'; total harmonic distortion 'D' and the fundamental power 'P' in power amplifiers. If total distortion in the amplifier is 9%; calculate its contribution to the total power.
- 8 (a) Explain the working of a single tuned amplifier. Draw its frequency response.
 - (b) Derive the equation for the 3 dB band width of capacitance coupled single tuned amplifier.

Page 2 of 2

1

2


II B. Tech II Semester (R09) Regular & Supplementary Examinations, April/May 2012 **ELECTRONIC CIRCUIT ANALYSIS** (Common to EIE, E. Con. E & ECE)

Time: 3 hours

Max Marks: 70

Answer any FIVE questions All questions carry equal marks

- 1 (a) Design a single stage emitter follower having R_i = 500 K Ω and R_o = 20 Ω . Assume h_{fe} = 50, h_{ie} = 1 K, h_{oe} = 25 μ A/V.
 - (b) For a single stage transistor amplifier, $R_s = 5K$ and $R_L = 10 \text{ K}$. The h-parameter values are $h_{fe} = 50$, $h_{ie} = 1.1 \text{ k}\Omega$, $h_{re} = 2.5 \times 10^{-4}$, $h_{oe} = 25\mu\text{A/V}$. Find A_I , A_v , A_{vs} , R_i and R_o for the CE transistor configuration.
- 2 (a) Compare emitter follower and Darlington emitter follower configurations in respect of:
 - (i) Current gain. (ii) Input impedance
 - (iii) Voltage gain (iv) Output impedance.
 - (b) If four identical amplifiers are cascaded each having $f_L = 100$ Hz, determine the overall lower 3 dB frequency. Assume non interacting stages.
 - (c) Write a short note on Gain-Band width product of amplifiers.
- 3 (a) Derive the expressions for trans-conductance and input conductance of CE amplifier using HF model.
 - (b) The LF parameters of a transistor at $I_c = 20 \text{ mA}$, $V_{ce} = 10 \text{ V}$ and at room temperature $h_{ie} = 400$, $h_{oe} = 10^{-5} \text{ A/V}$, $h_{fe} = 150$, $h_{re} = 10^{-4}$. At the same operating point $f_T = 60 \text{ MHz}$ and $C_{ob} = 3 \text{ PF}$, compute the values of the entire hybrid π parameters.
- 4 (a) Sketch a simple common drain amplifier circuit and discuss general ac circuit characteristics.
 - (b) Calculate the small signal voltage gain of the source follower circuit shown in figure. Assume the circuit parameters are $V_{DD} = 12V$, $R_1 = 162 \text{ k}\Omega$, $R_2 = 463 \text{ k}\Omega$ and $R_s = 0.75 \text{ k}\Omega$. The transistor parameters are: $V_{TN} = 1.5 \text{ V}$, $K_n = 4 \text{ mA/V}^2$ and $\lambda = 0.01 \text{ V}^{-1}$. Assume $R_{si} = 4 \text{ K}\Omega$.

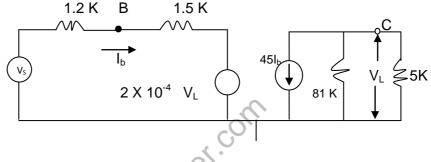
Contd. in Page 2

- 5 (a) A voltage series negative feedback amplifier has a voltage gain without feedback of A = 500, input resistance $R_i = 3$ K, output resistance $R_o = 20$ K and feedback ratio $\beta = 0.01$. Calculate the voltage gain, input resistance and output resistance of the amplifier with feedback.
 - (b) An amplifier has mid band gain of 125 and a bandwidth of 250 KHz. (i) If 4% negative feedback is introduced, find the new bandwidth and gain. (ii) If bandwidth is restricted to 1MHz, find the feedback ratio.
- 6 What are the factors that affect the frequency stability of an oscillator? How frequency (a) stability can be improved in oscillators?
 - Find c and h_{fe} of a transistor to provide f_o of 50 KH_z of an Rc phase shift oscillator, given R₁ (b) = 22 k Ω , R₂ = 68 k Ω , R_c = 20 k Ω , R = 6.8 k Ω and h_{ie} = 2 k Ω .
 - (C) What is piezoelectric effect? Explain the working of crystal oscillator.
- 7 Distinguish between large signal and small signal amplifiers. (a)
 - (b) Compare the series fed and transformer coupled class - A power amplifiers. Why is the conversion efficiency doubled in transformer coupled class - A amplifier?
- 8 Explain as to how you can increase the selectivity of single tuned amplifier. Draw the (a) circuit diagram and explain its operation and also draw its frequency response.
 - (b) What is a stagger tuned amplifier and explain its working?

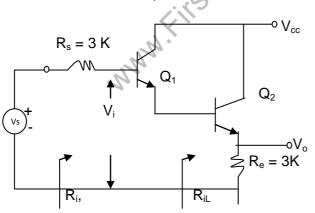
Page 2 of 2

2

3


II B. Tech II Semester (R09) Regular & Supplementary Examinations, April/May 2012 **ELECTRONIC CIRCUIT ANALYSIS** (Common to EIE, E. Con. E & ECE)

Time: 3 hours

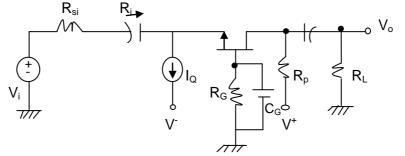

Max Marks: 70

Answer any FIVE questions All questions carry equal marks

- 1 (a) For a single stage transistor amplifier, $R_s = 10$ K and $R_L = 10$ K. The h-parameter values are $h_{fc} = -51$, $h_{ic} = 1.1$ K Ω , $h_{rc} = 1$, $h_{oc} = 25\mu$ A/V. Find A_I, A_V, A_{VS}, R_i and R_o for the CC transistor configuration.
 - (b) The small signal h-parameter ac equivalent circuit of a certain transistor connected in CE configuration is shown in figure. Calculate current gain, voltage gain, input impedance and output impedance by deriving the expressions for the above.

- 2 (a) Discuss the effect of emitter bypass capacitor and input & output coupling capacitors on the lower cut-off frequency if number of amplifiers is cascaded.
 - (b) For the circuit shown in figure, calculate R_i , A_i , A_v and R_o . Assume $h_{ie} = 1.1$ K, $h_{fe} = 50$, $h_{re} = 2.5 \times 10^{-4}$, $h_{oe} = 25\mu$ A/v.

- 3 (a) Define f_{α} , f_{β} and f_{T} and derive the relation between f_{β} and f_{T} .
 - (b) Derive all components in the hybrid π model in terms of h parameters in CE configuration.


Contd. in Page 2

3

Page 2

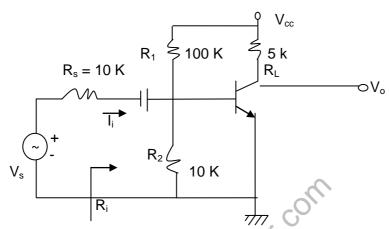
- 4 (a) Sketch a simple common gate amplifier circuit and discuss the general ac characteristics.
 - (b) For the circuit shown in figure, determine the output voltage for a given input current. The circuit parameters are: $I_{Q} = 1MA$, $V^{+} = 5V$, $V^{-} = -5V$, $R_{G} = 100 \text{ K}\Omega$, $R_{D} = 4 \text{ K}\Omega$ and $R_{L} = 10 \text{ K}\Omega$. The transistor parameters are: $V_{TN} = 1 \text{ V}$, $K_{n} = 1 \text{ m } A/V^{2} \text{ AND } \lambda = 0$. Assume the input current is 100 sin wt μA and assume $R_{si} = 50 \text{ K}\Omega$.

- 5 (a) Explain the concept of feedback with block diagram.
 - (b) Define desensitivity. For large values of D, what is Af? What is the significance of this result?
 - (c) An amplifier has a voltage gain of 400, $f_1 = 50$ Hz, $f_2 = 200$ KHz and a distortion of 10 % without feedback. Determine the voltage gain f1f, f2f and Df when a negative feedback is applied with feedback ratio of 0.001.
- 6 (a) Classify different types of oscillators based on frequency range.
 - (b) Why RC oscillators are not suitable for high frequency applications?
 - (c) Show that the gain of Wien bridge oscillator using BJT amplifier must be atleast 3 for the oscillations to occur.
- 7 (a) A transistor in a transformer coupled (class A) power amplifier has to deliver a maximum of 5 W to a load of 4Ω load. The quiescent point is adjusted for symmetrical swing, and the collector supply voltage is $V_{cc} = 20$ volts. Assume V min = 0 volts: (i) What is the transformer turns ratio?
 - (ii) What is the peak collector current?
 - (b) What is cross over distortion? How can a class AB power amplifiers avoid cross-over distortion?
 - (c) What are the advantages and disadvantages of push pull configuration? Show that in class –B push pull amplifier the maximum conversion efficiency is 78.5%.
- 8 (a) Explain in detail how do you alter the bandwidth of an RF amplifier which is:
 - (i) Single tuned. (ii) Double tuned (iii) Stagger tuned.
 - (b) Explain the operation of a double tuned amplifier. Explain the advantages of double tuned circuit over single tuned circuit.

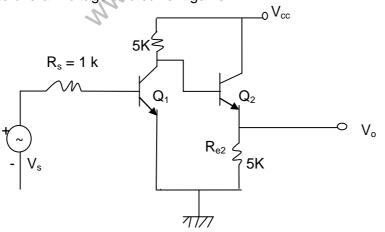
Page 2 of 2

4

II B. Tech II Semester (R09) Regular & Supplementary Examinations, April/May 2012 **ELECTRONIC CIRCUIT ANALYSIS** (Common to EIE, E. Con. E & ECE)


Time: 3 hours

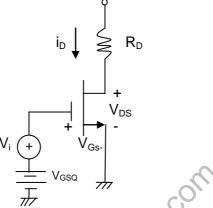
2


Max Marks: 70

Answer any FIVE questions All questions carry equal marks

1 (a) The h-parameters of a transistor are $h_{fe} = 50$, $h_{ie} = 1.1 \text{ K}\Omega$, $h_{re} = 2.5 \times 10^{-4}$, $h_{oe} = 24 \mu A/V$. Calculate A_{I} , A_{VS} , R_{i} and R_{o} shown in figure.

- (b) List out the characteristics of CB amplifier and mention their typical values. Draw the basic CB amplifier circuit and its equivalent h-parameter model. Derive an expression for its R_i and R_o .
- (a) How multistage amplifiers are classified depending upon the type of coupling?
 - (b) A two-stage amplifier circuit (CE CC configuration) is shown in figure. The hparameter values are $h_{fe} = 50$, $h_{ie} = 2 \text{ K}\Omega$, $h_{re} = 6 \times 10^{-4}$, $h_{oe} = 25 \mu \text{A/V}$. $h_{fe} = -51$, $h_{ic} = 2 \text{ K}\Omega$, $h_{rc} = 1$, $h_{oc} = 25 \mu \text{ A/V}$. Find the input and output impedances and individual, as well as overall voltage and current gains.


Contd. in Page 2

3 (a) Draw hybrid $-\pi$ model for a transistor in the CE configuration and explain the significance of every component in this model.

www.FirstRanker.com

cer.com

- (b) Draw the small signal equivalent circuit for an emitter follower stage at high frequencies. Derive expression for voltage gain.
- 4 (a) Compare the ac characteristics of the common source, source follower and common gate circuits.
 - (b) Determine the small signal voltage gain of a MOSFET circuit. For the circuit shown in figure, the parameters are: V_{GSQ} = 2.12 V, V_{DD} = 5 V, R_D = 2.5 K Ω . The transistor parameters V_{TN} = 1 V, K_n = 0.8 mA/V² and λ = 0.02 V⁻¹. Assume the transistor is biased in the saturation region.

- 5 (a) What are the different types of negative feedback? Briefly explain how the input and output impedances of an amplifier are affected by the different types of negative feedback.
 - (b) An amplifier has a voltage gain of 400, $f_1 = 50$ Hz, $f_2 = 200$ KHz and a distortion of 10% without feedback. Determine the voltage gain, f_{1f} , f_{2f} and D_f when a negative feedback is applied with feedback ratio of 0.001.
- 6 (a) Draw the circuit diagram of a RC phases shift oscillator using BJT. Derive the expression for frequency of oscillators.
 - (b) In a transistorized Hartley oscillator the two inductances are 2 mH and 20 μ H while the frequency is to be changed from 950 KH_z to 2050 KH_z. Calculate the range over which the capacitor is to be vaired.
- 7 (a) Derive the expression for maximum collector power dissipation Pc (max) in the case of class B power amplifiers.
 - (b) Derive the expression, with necessary diagrams, to calculate the total harmonic distortion 'D' in power amplifiers using the five-point method of analysis.
- 8 (a) Why do we use tuned amplifiers in the IF and RF range?
 - (b) Derive the expression for bandwidth in terms of resonant frequency and quality factor in case of double tuned amplifiers.

Page 2 of 2

4