Code: 9A05407
II B. Tech II Semester (R09) Regular \& Supplementary Examinations, April/May 2012
FORMAL LANGUAGES \& AUTOMATA THEORY
(Computer Science \& Engineering)
Max Marks: 70
Time: 3 hours
Answer any FIVE questions
All questions carry equal marks *****

1 (a) Define string and alphabet and discuss the operations on string.
(b) Define language. Discuss its operations.

Prove the theorem "Let $M=\left(\mathrm{Q}, \Sigma, \Delta, \sigma, \lambda, \mathrm{q}_{0}\right)$ be a Mealy machine then there exists a Moore machine M^{1} equivalent to $M^{\prime \prime}$.
(a) Prove " If L is accepted by DFA and then there exists an equivalent regular expression which develops L".
(b) Discuss the method for conversion of regular expression to finite automata.

4 For each of the following languages give a CFG that generates it:
(a) $\left\{a^{i} b^{j} c^{k}\right.$: $i<j$ or $\left.i>k\right\}$.
(b) $\left\{a^{i} b^{j},: ~ i \leq j<=2 i\right\}$.
(c) $\left\{a^{m} b^{n},: m \geq n\right.$ and $m-n$ is even $\}$.
(a) What are useless variable in a CFG? How do you find out useless variable in a given CFG? Explain with an example.
(b) Eliminate ambiguity from the following grammar: $\mathrm{E} \rightarrow \mathrm{E}+\mathrm{E} / \mathrm{E} * \mathrm{E} /(\mathrm{E}) /$ id.

Construct CFG for the language recognized by PDA with following moves:

$$
\begin{array}{ll}
\delta\left(q 0,1, Z_{0}\right)=\left(q 0, X Z_{0}\right) & \delta(q 0,1, X)=(q 0, X X) \\
\delta(q 0,0, X)=(q 1, X) & \delta\left(q 0, \epsilon, Z_{0}\right)=(q 0, \epsilon) \\
\delta(q 1,1, X)=(q 1, \epsilon) & \delta\left(q 0,0, Z_{0}\right)=\left(q 0, Z_{0}\right)
\end{array}
$$

Simplify the resulting grammar by eliminating useless variables.
7 Define a Turing Machine (TM) and the language accepted by a TM. Design a TM for recognizing the language $(a+b)^{\star} a b a(a+b)^{\star}$. Draw its transition diagram and table. Using the instantaneous description notation process the string aabaabaaab.
(a) Differentiate between NP hard and NP complete complexity of problems. Explain with suitable examples.
(b) Explain about PCP and MPCP in detail.

Code: 9A05407
II B. Tech II Semester (R09) Regular \& Supplementary Examinations, April/May 2012
FORMAL LANGUAGES \& AUTOMATA THEORY
(Computer Science \& Engineering)
Max Marks: 70
Time: 3 hours
Answer any FIVE questions
All questions carry equal marks
1 (a) What is the finite state machine? Define finite automata and discuss the representation of finite automata.
(b) Discuss the applications of finite automata.

2 Design a Moore and mealy machine for a binary input sequence such that if it has a substring 101 the machine outputs ' A ' if input has substring 110 it outputs B , otherwise it outputs C.

3 (a) What are the applications of regular expressions and finite automata?
(b) Denote a regular expression for the language that accepts all strings in which 'a' appears tripled over the set $\Sigma=\{a\}$ and also construct the finite automata for the same.

4 Prove using the pumping lemma that the following language L is not context - free. $L=\left\{w \neq x: w, x \in\{0,1\}^{*}\right.$ and w is a prefix of $\left.x\right\}$.

5 (a) Find out a context free grammar for the language of strings over the alphabet $\{0,1\}$ such that the number of 0 's are more than the number of 1 's in the strings.
(b) Show that the following grammar is ambiguous: $\mathrm{E} \rightarrow \mathrm{E}+\mathrm{E} / \mathrm{E} \times \mathrm{E} / \mathrm{a}$.

Eliminate the ambiguity from the above grammar using precedence of + is higher than the precedence of * in evaluating the expressions.
(a) Design a PDA for recognizing the language of palindromes over the alphabet $\{0,1\}$. Draw the computations tree showing all possible moves for the strings 00100 and 00101.
(b) Explain the procedure for converting a PDA which accepts a language L by final state into a PDA which accepts the L by empty stack.
$7 \quad$ Define a TM and the instantaneous description of a TM. Design a TM for recognizing $L=\left\{x \in\{a, b\}^{*} / x\right.$ ends with aba\}. Specify its transition diagram. Process the strings abaaba and ababaa using ID notation.

8 (a) What is universal TM? Explain in detail.
(b) Write about NP hard and NP complete complexity of problems.

Code: 9A05407
II B. Tech II Semester (R09) Regular \& Supplementary Examinations, April/May 2012
FORMAL LANGUAGES \& AUTOMATA THEORY
(Computer Science \& Engineering)
Time: 3 hours
Max Marks: 70
Answer any FIVE questions
All questions carry equal marks *****

1 (a) What is NFA? Discuss in detail about NFA.
(b) Distinguish between NFA and DFA.

2 (a) Discuss about the "Equivalence of Moore and Mealy machine".
(b) Discuss the method for converting the Moore machine to mealy machine.

Discuss and prove that the closure properties of regular sets are closed.

4
(a) Construct a grammar for the language L which has all the strings which are all palindrome over $\Sigma=\{a, b\}$.
(b) Differentiate between sentences and sentential forms.

5 (a) If G is a CFG in CNF and $x \in L$ (G) with $|x|=k$, how many steps are required to derive x in G. Prove your answer.
(b) A variable A in a CFG is said to be reachable if $S==>^{*} \alpha A \beta$. Develop a procedure for finding out reachable variable in a given CFG. Hustrate your procedure with an example.
(a) When do we say that a PDA is non deterministic? Design a PDA for recognizing the language of palindromes over the input alphabet $\{a, b\}$.
(b) Distinguish between a DPDA and NPDA.

7 (a) Design a TM for recognizing the language of palindromes over the input alphabet $\{a, b\}$. Show the moves of TM for the string abbbba.
(b) What is instantaneous description of a TM? Briefly explain.

8 (a) Write in detail about Turing reducibility with examples.
(b) Explain about PCP and MPCP with suitable examples.

II B. Tech II Semester (R09) Regular \& Supplementary Examinations, April/May 2012

FORMAL LANGUAGES \& AUTOMATA THEORY
(Computer Science \& Engineering)
Time: 3 hours
Max Marks: 70

> Answer any FIVE questions
> All questions carry equal marks

1 (a) Design NFA accepting all strings ending with 101 over $\Sigma=\{0,1\}$.
(b) Construct a NFA in which triple ' 1 ' is followed by triple ' 0 ' over $\Sigma=\{0,1\}$.

2 (a) Convert the given NFA with Σ to its equivalent DFA.

(b) What is the "Minimization of FSM"? Explain the method for construction of minimum state automata.

3 Write R.E for the following and explain:
(a) All strings over $\{0,1\}$ with the substring ' 0101 '.
(b) All strings beginning with ' 11 ' and ending with $a b$.
(c) Set of all strings over $\{a, b\}$ with 3 consecutive b's.
(d) Set of all strings that end with ' 1 ' and has no substring ' 00 '.

4 Discuss and explain the following:
(a) CFL is not closed under intersection and complementation.
(b) A regular grammar generates an empty string.
(c) A regular language is also context free but not reverse.

5 (a) Show that $L=\left\{a^{p} / p\right.$ is a prime number $\}$ is not a CFL.
(b) Show that every context free language without Θ, can be generated by a context free grammar in which all productions are of the form $A \rightarrow a$ and $A \rightarrow a a b$.

6 (a) Construct a PDA for recognizing the language of all strings over the input alphabet $\{a, b\}$ such that the number of b's in each string are twice the number of a's. Show the moves of the PDA for the string abbabbbba.
(b) Write a short note on NPDA and DPDA's.

7 (a) Define recursively enumerable languages and recursive languages. Prove that the union of two recursive languages is also recursive.
(b) Design a TM for computing the square of a given positive integer. Show the moves of the TM for a value of 2.

8 (a) Discuss about the classes of the computational complexity for problems in detail.
(b) Explain about PCP and MPCP with suitable examples.

