II B. Tech II Semester (R09) Regular \& Supplementary Examinations, April/May 2012
NETWORK THEORY
(Electrical \& Electronics Engineering)
Time: 3 hours
Max Marks: 70
Answer any FIVE questions
All questions carry equal marks
1 (a) Derive the relation between phase and line values of a three phase star connected balanced system.
(b) Three inductive coils, each with a resistance of 15Ω and an inductance of 0.03 H are connected in delta to three phases, $400 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Calculate: (i) phase current and line current (ii) total power absorbed.

In the network shown in figure below, the switch is closed at $\mathrm{t}=0$ and there is no initial charge on either of the capacitors. Find the current 'i' by Laplace transform method.

A series RL circuit is shown in figure below. If the switch ' K ' in the circuit is closed at $t=0$, Find an expression for $i(t)$.

5 (a) What are Z-parameters?
(b) A two port network has the following Z-parameters:
$Z_{11}=10 \Omega ; Z_{22}=12 \Omega ; Z_{12}=Z_{21}=5 \Omega$ Complete the y parameters of the same network.
What is meant by cascading of networks? Obtain the parameters of a resulting network when two networks are cascaded.

Find the cosine and sine form of the Fourier series:

$$
f(t)=2+\sum_{n-1}^{\infty} \frac{10}{n^{3}+1} \cos \left(2 n t+\frac{n \pi}{4}\right)
$$

A symmetrical 3-phase, 400 V , three wire supply feeds an unbalanced star connected load, with impedances of the load as, $Z_{R}=25 \angle 0^{\circ} \Omega, Z_{Y}=11 \angle-20^{\circ} \Omega$ and $Z_{B}=15 \angle 10^{\circ} \Omega$. Find: (i) Line currents (ii) Voltage across the impedances (iii) The displacement neutral voltage by Milliman's theorem. $Z_{11} 10 \Omega ; Z_{22}-12 \Omega ; Z_{12}-Z_{21}-5 \Omega$ Complethe y parameters of the same network.

Derive the Fourier transform of a single rectangular pulse of width τ and height A .

2

II B. Tech II Semester (R09) Regular \& Supplementary Examinations, April/May 2012
NETWORK THEORY
(Electrical \& Electronics Engineering)
Time: 3 hours
Max Marks: 70

> Answer any FIVE questions
> All questions carry equal marks

1 (a) Show that line current is 3 times the phase current in a 3 -phase delta connected balanced system.
(b) Three inductive coils, each with a resistance of 15Ω and an inductance of 0.03 H are connected in star to three phases, $220 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Calculate: (i) phase current and line current (ii) total power absorbed.

A symmetrical 3-phase, 400 V , three wire supply feeds an unbalanced star connected load, with impedances of the load as, $Z_{R}=25 \angle 0^{\circ} \Omega, Z_{Y}=11 \angle-20^{\circ} \Omega$ and $Z_{B}=15 \angle 10^{\circ} \Omega$. Find: (i) Line currents (ii) Voltage across the impedances (iii) The displacement neutral voltage by using star-delta conversion method.

In the circuit shown in figure below, switch (1) is closed at $\mathrm{t}=0$ and then switch (2) is closed at $t=t^{1}=4 m \mathrm{~s}$. Find the expression for current $\mathrm{i}(\mathrm{t})$ in the intervals $0<\mathrm{t}<\mathrm{t}^{1}$ and $\mathrm{t}>\mathrm{t}^{1}$.
 angle form.
(a) What are h-parameters?
(b) For a two-port network, compute h-parameters from the following data:
(i) With the output terminal short circuited: $\mathrm{V}_{1}=25 \mathrm{~V}, \mathrm{I}_{1}=1 \mathrm{~A}, \mathrm{I}_{2}=2 \mathrm{~A}$.
(ii) With the input terminals open circuited: $\mathrm{V}_{1}=10 \mathrm{~V} ; \mathrm{V}_{2}=50 \mathrm{~V} ; \mathrm{I}_{2}=2 \mathrm{~A}$.

Derive the expression for ABCD parameters of the resulting network when two networks are cascaded.

Express the Fourier series $f(t)=10+\sum_{n=1}^{\infty} \frac{4}{n^{2}+1} \cos 10 n t+\frac{1}{n^{3}} \sin 10 n t$ in a cosine and

Find the Fourier transform of the following functions.
(a) $4 \delta(t+2)$
(b) $\sin w_{0} t$

Code: 9A02406
II B. Tech II Semester (R09) Regular \& Supplementary Examinations, April/May 2012
NETWORK THEORY
(Electrical \& Electronics Engineering)
Time: 3 hours
Max Marks: 70

Answer any FIVE questions

All questions carry equal marks

1 (a) Derive the expressions for phase and line voltages, phase and line currents in a three phase star connected balanced system.
(b) Three inductive coils, each with a resistance of 15Ω and an inductance of 0.03 H are connected in delta to three phases, $220 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Calculate (i) phase current and line current (ii) total power absorbed.

Find the Fourier transform of the following functions:
(a) $\cos w_{0} t$
(b) gate function, $\mathrm{g}(\mathrm{t})=\mathrm{u}(\mathrm{t}-1)-\mathrm{u}(\mathrm{t}-2)$.

Code: 9A02406
II B. Tech II Semester (R09) Regular \& Supplementary Examinations, April/May 2012
NETWORK THEORY
(Electrical \& Electronics Engineering)
Time: 3 hours
Max Marks: 70

> Answer any FIVE questions All questions carry equal marks

1 (a) Explain how the reactive power can be measured by using single watt meter with a neat diagram.
(b) Three coils each having a resistance of 19Ω and an inductive reactance of 14Ω are connected in star and fed by a 3-phase, $220 \mathrm{~V}, 50 \mathrm{~Hz}$ system. Find:
(i) Line current
(ii) Power and
(iii) Power factor.

Two watt meters are connected to measure power in a 3-phase circuit. The reading of the one of the meter is 5 kW when the load power factor is unity. If the power factor of the load is changed to 0.707 lagging, without changing the total input power. Calculate the readings of the two watt meters. Derive the formula for power factor.

The circuit shown in fig below, the switch S_{1} is closed at $\mathrm{t}=0$ and switch S_{2} is opened at $t=4 \mathrm{~ms}$. Obtain ' i ' for $\mathrm{t}>0$ and sketch it.

Find h-parameters for the network shown below:

Discuss in detail the concepts of transformed networks and network parameters using transformed variables.

Derive the Fourier series of a square wave drawing a neat wave form.
Find the Fourier Transform of the following functions:
(a) $\delta\left(t-t_{0}\right)$
(b) $\cos w_{0} t$.

