Code: 9A01403
B.Tech II Year II Semester (R09) Regular \& Supplementary Examinations, April / MAY 2012

STRUCTURAL ANALYSIS - I

(Civil Engineering)
Time: 3 hours
Max Marks: 70
Answer any FIVE questions
All questions carry equal marks

1 A fixed beam $A B$ of span 10 m is carrying a u.d.I. of $6 \mathrm{KN} / \mathrm{m}$ over the left half of the span. Find the fixing moments and support reactions. Draw BMD and SFD.

Beam AEBCD shown in figure is supported at A, B, C, D and hinged at E. Plot BMD. Use theorem of three moments

Analyze the continuous beam shown in figure using slope deflection method. Plot BMD.

4 Analyze the continuous beam shown in figure by moment distribution method. The support A settles by 10 mm , B settles by 30 mm and C settles by 20 mm . Take $I=2.4 \times 10^{6} \mathrm{~mm}^{4}, E=$ $2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$. Plot BMD.

5 Using Castiglione's first theorem, determine the deflection and rotation of the overhanging end A of the beam loaded as shown in figure.

Contd. in Page 2
Page 1 of 2

Code: 9A01403
6 Two point loads of 4 KN and 6 KN spaced 6 m apart cross a grider of 16 m span, the 4 KN load leading from left to right. Construct the maximum S.F and B.M diagram, stating the absolute maximum values.

8 Write short notes on:
(a) Influence lines for shear force and bending moment.
(b) Internal and external indeterminacies.

Code: 9A01403
B.Tech II Year II Semester (R09) Regular \& Supplementary Examinations, April / MAY 2012

STRUCTURAL ANALYSIS - I

(Civil Engineering)
Time: 3 hours
Max Marks: 70
Answer any FIVE questions
All questions carry equal marks

1 A beam AB of uniform section and 6 m span is built-in at the ends. A uniformly distributed load of $3 \mathrm{KN} / \mathrm{m}$ runs over the left half of the span and there is in addition a concentrated load of 4 KN at right quarter. Determine the fixing moments at the ends and the reactions. Draw BMD and SFD.

2 Analyze the continuous beam shown in figure using theorem of three moments. During loading support B sinks by 1 cm . Draw $B M D, E=2 \times 10^{4} \mathrm{~N} / \mathrm{mm}^{2}$.

$I B C=2 I_{C B}=2 I_{C D}=30,000 \mathrm{~cm}^{4}$.

4 Analyze the continuous beam shown in figure by moment distribution method. Support B

3

5

Analyze the continuous beam shown in figure using slope deflection method. Plot BMD.
 settler by 30 mm . Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{I}=3 \times 10^{6} \mathrm{~mm}^{4}$. Plot BMD.
A

Calculate the central deflection and the slope at ends of a simply supported beam carrying a u.d.I. w per unit length over the whole span. Use castiglianos first theorem.

Code: 9A01403
6 Two point loads of 4 KN and 6 KN spaced 6 m apart cross a girder of 12 m span, the 4 KN load leading from left to right, construct maximum S.F and B.M. diagram, stating the absolute maximum values.
$7 \quad A$ beam $A B C$ is supported at A, B and C, and has a hinge at D distant 3 from $A, A B=2 m$ and $B C=10 \mathrm{~m}$. Draw the influence lines for:
(i) Reactions at A, B and C, \quad (ii) S.F. at a point just to the right of B.

Hence if a u.d.I of intensity $2 \mathrm{KN} / \mathrm{m}$ and length 3 m travels from left to right, calculate above quantities from which influence lines are drawn.

8 Write short notes on:
(a) Strain energy due to bending moment.
(b) Indeterminate structures.

Code: 9A01403
B.Tech II Year II Semester (R09) Regular \& Supplementary Examinations, April / MAY 2012

STRUCTURAL ANALYSIS - I

(Civil Engineering)
Time: 3 hours
Max Marks: 70
Answer any FIVE questions
All questions carry equal marks

1 Find the fixed end moments and plot SFD and BMD diagram for the beam loaded as shown in figure.

2 Analyze the continuous beam shown in figure using theorem of three moments.
Draw BMD.

3 Analyze the continuous beam shown in figure using slope deflection method. The support B sinks by 0.03 m .
$E=200 \mathrm{GPa}, \mathrm{I}=0.2 \times 10^{-3} \mathrm{M}^{2}$. Draw BMD and SFD.
A

4 Analyze the continuous beam shown in figure using moment distribution method, if there is no support at the end D. Plot BMD.
A

Contd. in Page 2
Page 1 of 2

Code: 9A01403
5 (a) State and prove the first theorem of castigliano.
(b) Find the deflection at the free end of a cantilever of length I carrying a u.d.I. ω per unit run over the whole span. Assume uniform flexural rigidity.

6 The system of concentrated load shown in figure rolls from left to right across a beam simply supported over a span of 40 m , the 4 KN load leading, for a section 15 m from the left hand support, determine:
(i) The maximum bending moment
(b) The maximum shear force

7 Explain how to draw the influence lines to find the reactions at the supports and the bending moment in detail.

8 Write short notes on:
(a) Static and kinematic indeterminacies.
(b) Strain energy due to axial load.

Code: 9A01403
B.Tech II Year II Semester (R09) Regular \& Supplementary Examinations, April / MAY 2012

STRUCTURAL ANALYSIS - I

(Civil Engineering)
Time: 3 hours
Max Marks: 70
Answer any FIVE questions
All questions carry equal marks

1 A fixed beam $A B$ of span 6 m is carrying a u.d.l. of $4 \mathrm{KN} / \mathrm{m}$ over the left half of the span. Find the fixing moments and support reaction. Draw BMD and SFD.

2 Analyze the continuous beam shown in figure using theorem of three moments.
During loading support B sinks by 1 cm . Plot SFD and BMD. $I=8000 \mathrm{~cm}^{4} \mathrm{E}=2 \times 10^{4}$ $\mathrm{N} / \mathrm{mm}^{2}$.

3 Evaluate the bending moment and shear force diagram of the beam shown in figure using slope deflection method.
A

4 Analyze the continuous beam shown in figure using moment distribution method.
Plot the BMD.

5 Derive the expression for:
(i) Strain energy due to axial load and (ii) Strain energy due to flerural loading.

Contd. in Page 2

Code: 9A01403
A uniformly distributed load of 1 KN per meter run, 6 m long crosser a girder of 16 m span. Construct maximum S.F and B.M. diagram and calculate the values at sections at $3 \mathrm{~m}, 5 \mathrm{~m}$ and 8 m from the left hand support.
$7 \quad$ The following system of the wheel loads crosses a span of 25 m .
$\begin{array}{lllllll}\text { Wheel load (kN) } & 16 & 16 & 20 & 20 & 20\end{array}$
Distance between centre (m) $\quad 3 \quad 3 \quad 4$
Find the maximum value of bending moment and shearing force in the span.

8 Write short notes on:
(a) Castigliono's first theorem.
(b) Internal and external indeterminacies in trusses.

