

R09

III B. Tech I Semester (R09) Supplementary Examinations, May 2012 AUTOMATA & COMPILER DESIGN

(Common to Computer Science & Systems Engineering & Information Technology) Max Marks: 70

Time: 3 hours

Code: 9A12501

		Answer any FIVE questions All questions carry equal marks
1	(a) (b)	Prove that for every NFA, there exists an equivalent DFA. Design an NFA for the recognizing the language generated by (a + b)*ab. Convert it into DFA.
2		Eliminate left recursion from the following grammar and then construct predictive parse table for the resultant grammar. $E \rightarrow E+T/T$ $T \rightarrow T^*F/F$ $F \rightarrow (E)/id$ Is the grammar LL (1). Show the moves of the parser for a+a*a.
3	(a) (b)	Explain the general method of bottom up parsing with an example. Write in detail about the YACC parser generator.
4	(a) (b)	What is the use of a dependency graph for annotated parse trees? Explain with an example. Write three address codes for the following C-program statements. if (a <b) (b<c)="" else="" if="" x="10;</td" {=""></b)>
5		Explain unrestricted grammar and give the recognizer for the unrestricted grammar.
6		Consider the following Pascal code and draw the activation record. Program param(input , output); Procedure b(function h(n: integer): integer); Var m : integer Begin m := 3; write in(h(2) End { b }; Procedure c: Var m : integer; Function f(n: integer) : integer ; Begin f := m + n End { f } Procedure r; Var m : integer; Begin m := 7; B(f) End { r } Begin m := 0; r end { c }; Begin C End.
7		Write about the following algorithms: (a) Detection of loop invariant computation. (b) Code motion.
8		Explain issues in the design of a code generator.