B.Tech III Year I Semester (R07) Supplementary Examinations, May 2012
 CONTROL SYSTEMS

(Electronics and Instrumentation Engineering)
Time: 3 hours
Max Marks: 80
Answer any FIVE questions
All questions carry equal marks

1 (a) List the differences between open loop and closed loop control systems.
(b) For the mechanical translational system shown below in figure (1). Find transfer function $\frac{X_{2}(S)}{F(S)}$.

Figure 1

2 Find the overall transfer function of the system whose signal flow graph shown in figure (2).

Figure 2

3 (a) What are the standard test signals? Give their representations mathematically and graphically.
(b) Find the steady state error for unit step, unit ramp and unit parabolic inputs for the system: $G(S)=\frac{1000(S+1)}{(s+10)(S+50)}$

4 (a) State and explain Routh-Hurwitz stability criterion.
(b) Consider the characteristic equation: $\mathrm{S}^{4}+2 \mathrm{~S}^{3}+8 \mathrm{~S}^{2}+4 \mathrm{~S}+3=0$, comment on its stability.

Contd. in Page 2

Code: R7 311003

5 (a) Draw the Bode magnitude plot for the system having transfer function:

$$
\mathrm{G}(\mathrm{~S})=\frac{2000(S+1)}{S(S+10)(S+40)}
$$

(b) Explain the significance of Bode plots in stability studies of linear control systems.

6 Sketch the Nyquist plot and determine there from the stability of the following open loop transfer function of unity feedback control system: $\mathrm{G}(\mathrm{S}) \mathrm{H}(\mathrm{S})=\frac{K(S+2)}{S^{2}(S+1)}$.

7 Design a lead compensator for a unity feedback system with openloop transfer function $\mathrm{G}(\mathrm{S})=\frac{K}{S(S+1)(S+5)}$,to satisfy the following specifications.
(a) Velocity error constant, $\mathrm{K}_{\mathrm{v}} \geq 50$.
(b) Phase margin $\geq 20^{\circ}$.

8 The state model of a system is given by
$\left[\begin{array}{l}\dot{x}_{1} \\ \dot{x}_{2} \\ \dot{x}_{3}\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 2 \\ -1 & 1 & 1 \\ 0 & 3 & -1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]+\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right] u$ and $\mathrm{y}=\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$.
Transform this state model into a canonical state model, also compute the state transition matrix.

