III B. Tech I Semester (R09) Supplementary Examinations, May 2012
CONTROL SYSTEMS
(Common to EEE, E.Con.E, EIE \& ECE)
Time: 3 hours

Answer any FIVE questions

All questions carry equal marks
1 Write the differential equations governing the mechanical rotational systems shown in figure. Draw the torque-voltage and torque-current electrical analogous circuits and verify by writing mesh and node equations:

2
Find the transfer function shown in figure using block diagram algebra.

(a) Draw the transient response of a second order system and define all the specifications for under damped case?
(b) For a unity feedback control system the open loop transfer function $G(s)=10(s+2) / s^{2}(s+1)$, find the steady state error when the input $R(s)=(3 / s)-\left(2 / s^{2}\right)+\left(1 / 3 s^{3}\right)$.
(a) What are the necessary and sufficient conditions to investigate the stability of the system using RouthHurwitz criterion?
(b) Factorize the given polynomial using Routh- Hurwitz criterion:
$F(s)=s^{6}+2 s^{5}+8 s^{4}+12 s^{3}+20 s^{2}+16 s+16=0$.
(a) Given $G(s)=(s-5) /(s+5)$ Determine the Phase angle at $0,5 \&$ infinite frequencies.
(b) Draw the Bode phase plot for the system having the following transfer function: $G(s)=5(1+2 \mathrm{~s}) /[(1+4 \mathrm{~s})(1+0.25 \mathrm{~s})]$.

6 Sketch the polar plot for following transfer function and from the plot determine the phase margin and gain margin: $G(s)=[(1+0.2 s)(1+0.025 s)] /\left[s^{3}(1+0.005 s)(1+0.001 s)\right]$.

Explain the different steps to be followed for the design of a lag compensator using Bode plot.
Find the transfer function from the A, B, C matrices of a state model.

$$
\mathrm{A}=\left[\begin{array}{ccc}
-2 & 1 & 0 \\
0 & -3 & 1 \\
-3 & -4 & -5
\end{array}\right] \quad \mathrm{B}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \quad \mathrm{C}=\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right]
$$

