DIGITAL CONTROL SYSTEMS

(Electronics and Control Engineering)
Time: 3 hours
Answer any FIVE questions
All questions carry equal marks

1 (a) Explain the types of A/D converters.
(b) Compare zero order hold and first order hold.

2 (a) Obtain the z-transform of K^{3}.
(b) Determine the initial and final value of $X(z)=\frac{\left(1-e^{-T}\right) \cdot z^{-1}}{\left(1-z^{-1}\right)\left(1-e^{-T} z^{-1}\right)}$.

3 (a) Solve the following difference equation by use of z -transform method.
$x(k+2)+3 x(k+1)+2 x(k)=0$
$x(0)=0, \quad x(1)=1$
(b) Explain the mapping between S plane and Z -plane.

4 (a) Obtain the inverse of the matrix (2I-G). Where $G=\left[\begin{array}{ccc}0.1 & 0.1 & 0 \\ 0.3 & -0.1 & -0.2 \\ 0 & 0 & -0.3\end{array}\right]$
(b) Give the matrix $\mathrm{A}=\left[\begin{array}{cc}0 & 1 \\ -25 & -4\end{array}\right] B=\left[\begin{array}{ll}1 & 1+\text {. Find the } \mathrm{G} \text { and } \mathrm{H} \text { for } \mathrm{T}=1 \mathrm{sec} \mathrm{c}\end{array}\right.$

5 (a) Explain the conditions for complete observability of discrete time systems.
(b) Test the following system for complete observability:
$x(k+1) \cdot T=G \cdot x(k T)+H U(k T), \quad y(k T)=C \times(k T)$.
$\mathrm{G}=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6\end{array}\right] H=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right] C=\left[\begin{array}{lll}4 & 5 & 1\end{array}\right]$
6 (a) Explain the types of stability methods in Z-plane.
(b) Find the stability of the following system using Jury's method.
$P(Z)=Z^{3}-1.3 Z^{2}-0.08 Z+0.24=0$.

7 (a) Explain bilinear transformation.
(b) Explain the need for compensation.

8 Explain the design of digital controllers using pole placement methods.

