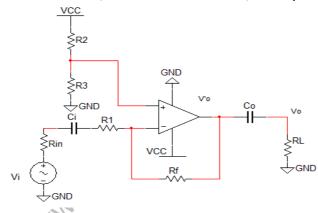


Code: 9A04502 R09

III B. Tech I Semester (R09) Supplementary Examinations, May 2012

LINEAR IC APPLICATIONS


(Electronics & Communication Engineering)

Time: 3 hours Max Marks: 70

Answer any FIVE questions All questions carry equal marks

- 1 (a) Draw the equivalent circuits of emitter coupled differential amplifier from which calculate A_d .
 - (b) Draw the block diagram of four stage cascaded amplifier. Explain the function of each block.
- 2 (a) Discuss the electrical characteristics of an OP-AMP in detail.
 - (b) Discuss the three basic types of linear IC packages and briefly explain the characteristics of each.
- For the inverting amplifier with a single supply shown below determine:
 - (a) Band width. (b) Maximum ideal voltage swing.
 - (c) Sketch output waveforms V_O and V_O if V_{in} = 200 mV peak sine wave at 1 KHz.

If
$$R_1 = 10 \text{ K}\Omega$$
, $R_2 = R_3 = R_f = 100 \text{ K}\Omega$, $C_i = C_O = 0.1 \mu\text{F}$.

- 4 (a) Design a saw tooth wave form generator using OP-AMP and plot the waveforms for the given specifications: frequency: 5 KHz, V_{sat} = ± 15 V. (Assume necessary data).
 - (b) Explain how an operational amplifier is used as a basic comparator.
- 5 (a) Find the order of a low pass filter which provider -60 dB attenuation at $w/w_0 = 2$.
 - (b) Design a third order Butterworth low pass with upper cutoff frequency 1 KHz.
- 6 (a) Configure a 555 timer as a Schmitt trigger and explain.
 - (b) Explain frequency translation and FSK demodulation using 565 PLL.
- 7 (a) Classify commonly available analog to digital converters.
 - (b) Describe the operation of successive approximation type analog to digital converter.
- 8 Derive the output voltage expression for:
 - (i) Analog voltage multiplier circuit. (ii) Analog voltage divider circuit.
