

Code: 9A21501

R9

B.TECH III Year I Semester (R09) Supplementary Examinations, May 2012 MATHEMATICS FOR AEROSPACE ENGINEERING

(Aeronautical Engineering)

Time: 3 hours

Max Marks: 70

Answer any FIVE questions All questions carry equal marks

1 (a) Show that:

$$(1 - 2xt + t^2)^{-1/2} = \sum_{n=1}^{\infty} t^n P_n(x)$$

- (b) (i) State and prove Rodrigue's formula. (ii) Express $J_5(x)$ in terms of $J_0(x)$ and $J_1(x)$.
- 2 (a) Prove that the function $f(z) = \sqrt{|xy|}$ is not analytic at the origin, through Cauchy-Riemann equations are satisfied at the origin.
 - (b) Show that $u = sinx coshy + 2cosx. sinhy + x^2 y^2 + 4xy$ satisfies the Laplace equation. Find the corresponding analytic function.
- 3 (a) Evaluate $\int_c (y^2 + z^2) dx + (z^2 + x^2) dx + |x^2 + y^2| dz$ from (0, 0, 0) to (1, 1, 1) where C is the curve $x = t, y = t^2, z = t^3$ in parametric form.
 - (b) State and prove Cauchy's integral formula.
- 4 (a) (i) Find the poles of $(z) = \frac{1+z}{(1-z)^2}$, and the reduce at each pole. (ii) Find the poles of $f(z) = \frac{z^2 - 2z}{(z+1)^2(z^2+1)}$, and the residues at these poles
 - (b) State and prove Liouville theorem.
- 5 (a) If $\omega = \frac{1+iz}{1-iz}$, find the image of |z| < 1.
 - (b) (i) Define fixed point of the transformation. (ii) Find the bilinear transformation which maps the points z = 1, i, -1, respectively on to $\omega = i, 0, -i$.
- 6 (a) (i) Define contravariant tensors.
 - (ii) Prove that the contraction of the outer product of the tensors A^P and B_q is invariant.
 - (b) Write the transformation law of Christoffel symbol of second kind.
- 7 (a) (i) Define conditional probability. (ii) State and prove Baye's theorem.
 - (b) In a normal distribution, 31% of the items are under 45 and 8% are over 64. Find the mean and standard deviation of the distribution.
- 8 (a) Prove that the mean and variance of Poisson distribution is equal.
 - (b) Suppose that x has a Poisson distribution. If $P(x=2)=\frac{2}{3}P(x=1)$ find (i) P(x=0). (ii) P(x=3).
