Code: R7312301

R7

B.Tech III Year I Semester (R07) Supplementary Examinations, May 2012

TRANSPORT PHENOMENA IN BIO PROCESSES

(Biotechnology)

Time: 3 hours

Max Marks: 80

Answer any FIVE questions

All questions carry equal marks

- 1 (a) Give a brief account on Non-Newtonian fluids.
 - (b) Describe the different factors effecting broth viscosity.
- 2 (a) A fermentation broth with viscosity 10⁻²Pa s and density 1000 Kg m⁻³ is agitated in 50 m³ baffled tank using a marine propeller 1.3 m is diameter. Calculate the power required for a stirrer speed of 4 S⁻¹. The tank is fitted with four baffles. (Power number versus Reynolds number graph should be provided during the examination)
 - (b) Explain about interface transport in isothermal system.
- 3 (a) The temperature at the inside surface of a hollow silver sphere is 85[°] C and the outside surface, 15[°] C. The inside diameter is 5 cm and the outside diameter is 7.5 cm. The value of K of silver ils 425 W/mK. Find the rate of hear flow.
 - (b) In what way are Newton's law of viscosity and Fourier's law of heat conduction similar? Dis similar.
- 4 A 400 x 400 mm copper slab 5 mm thick at a uniform temperature of 250° C suddenly has its surface temperature lowered to 30° C. Find the time at which the slab temperature becomes 90° C. p = 9000 Kg/m³, c = 0.38 KJ/Kg^o K, k = 370 W/m^oK, h= 90 W/m²⁰K. All terms with usual notations.
- 5 (a) Explain in detail about two film theory with neat sketch.
 - (b) Determine the diffusivity of CO through a mixture of N₂ and O₂ in which the concentration of CO is essentially zero. The gas mixture will be at 25[°] C and 2 atm pressure. Other data: $Dco - o_2 = 0.185 \frac{cm^2}{s}$ at 273[°] K, 1 atm: $Dco - N_2 = 0.192 \frac{cm^2}{s}$ at 288[°] K.
- Solvent A is evaporating out of a coat of lacquer on a plane surface exposed to a tangential stream of non-condensable gas B. At a given point on the surface the gas phase mass transfer coefficient at the prevailing average fluid properties is given as 0.1 lb-mole/hr ft²; the Schmidt number is = 2.0. The interfacial gas composition is $X_{AO} = 0.8$. Estimate the local rate of evaporation using the stagnant film model.
- 7 Calculate the maximum rate of absorption of O_2 in a fermenter from air bubbles at 1 atm abs pressure having diameters of 100 µm at 37[°] C into water having a zero concentration of dissolved O_2 . The solubility of O_2 from air in water at 37[°] C is 2.26 x10⁻⁴ Kgmol O_2/m^3 . The diffusivity of O_2 in water at 37[°] C is 3.25 x 10⁻⁹ m²/s. Agitation is used to produce the air bubbles.
- 8 (a) Explain briefly about how oxygen mass transfer and $k_{L}a$ can limit the biomass density in ferementors.
 - (b) Explain briefly about the dynamic method for the estimation of mass transfer coefficient.
