B.Tech IV Year II Semester (R09) Regular Examinations, March/April 2013

DESIGN \& DRAWING OF IRRIGATION STRUCTURES

(Civil Engineering)
Time: 3 hours
Max Marks: 70
Answer any ONE question
All questions carry equal marks

1 Design a sloping glacis weir for the following data and draw plan at top and longitudinal section.

Hydraulic particulars	U/S canal	DIS canal
Full supply discharge	$7.5 \mathrm{~m}^{3} / \mathrm{s}$	$7.5 \mathrm{~m}^{3} / \mathrm{s}$
Bed width	6.0 m	6.0 m
Bed level	+10.00 m	+8.00 m
Full supply depth	1.5 m	1.5 m
F.S.L	+11.50 m	+9.50 m
Top level of bank	+12.50 m	+10.50 m

Hard soil is available for foundation below +8.00 level.

2 Design a tank sluice with tower head for the data given below:
Ayacut cut to be irrigated $=200$ ha
Duty $=900$ ha/cumec
Top width of tank bund $=2 \mathrm{~m}$ with $2: 1$ side slope.
The top level at the site $=+140.00$
The ground level at the site $=+130.00$
Hard soil for foundation $=+133.00$
The sill of the sluice at off take $=+133.50$
The maximum water level in tank $=+138.00$
Full tank level $=+137.25$
Average low water level in the tank $=+134.25$
The channel bed level $=+133.50$
Bed width of the channel $=1.2 \mathrm{~m}$
Full supply level $=+134.00$
Side slopes of the channel $=2: 1$ with the top of bank at +135.00
Draw the following:
(i) Half plan at top and longitudinal section of the sluice barrel.
B.Tech IV Year II Semester (R09) Regular Examinations, March/April 2013

DESIGN \& DRAWING OF IRRIGATION STRUCTURES
(Civil Engineering)
Time: 3 hours
Max Marks: 70
Answer any ONE question
All questions carry equal marks

1 Design a surplus weir for a minor tank forming a group of tanks with the following available information:
Combined catchment area $\quad=25.89 \mathrm{~km}^{2}$
Intercepted catchment area $\quad=20.71 \mathrm{~km}^{2}$
Top width of bund $=2 \mathrm{~m}$
Side slopes of the bund $\quad=2: 1$ on both sides
Top level of bund $=+14.50$
Maximum water level $=+12.75$
Full tank level $=+12.00$
General ground level at the site $=+11.00$
Ground level slopes off to a level $=+10.00$ in about 6 m distance
The foundations are of hard grovel $=+9.50$
Saturation gradient $\quad=5: 1$ with 1 m clear cover
Provisions are to be made to store water M.W.L in times of necessity.
Draw the following:
(i) Half plan at top and half plan at foundation level.
(ii) Section across weir.

2 Design a tank sluice with tower head for the data given below:

Ayacut to be irrigated	$=200 \mathrm{ha}$
Duty	$=1000 \mathrm{ha} / \mathrm{cumec}$
Top width of tank bund	$=2 \mathrm{~m}$ with $2: 1$ side slope
The top level of tank	$=+40.00$
The ground level at the site	$=+34.50$
Hard soil for foundation	$=+33.50$
The sill of the sluice at off take	$=+34.00$
The maximum water level in tank	$=+38.00$
Full tank level	$=+37.00$
Average low water level in the tank	$=+35.00$
The channel bed level	$=+34.00$
Bed width of the channel	$=1.25 \mathrm{~m}$
Full supply level	$=+34.50$
Side slopes of the channel	$=1 \frac{1}{2}: 1$ with top of tank at +35.50

Draw the following:
(i) Half plan at top and longitudinal section of the sluice barrel.

B.Tech IV Year II Semester (R09) Regular Examinations, March/April 2013

DESIGN \& DRAWING OF IRRIGATION STRUCTURES

(Civil Engineering)
Time: 3 hours
Max Marks: 70

Answer any ONE question
 All questions carry equal marks

1 Design a surplus weir for a minor tank forming a group of tanks with the following available information:
Combined catchment area $=35 \mathrm{~km}^{2}$
Intercepted catchment area $\quad=10 \mathrm{~km}^{2}$
Top width of bund
$=2 \mathrm{~m}$
Side slopes of the bund
$=2: 1$ on both sides
Top level of bund
= + 12.25
Maximum water level
$=+10.75$
Full tank level
$=+10.00$
General ground level at the site
$=+8.50$
Ground level slopes off to a level
$=+8.00$ in about 6 m distance
The foundations are of hard gravel
$=+7.00$
Saturation gradient
$=5: 1$ with 1 m clear cover
Provisions are to be made to store water M.W.L in times of necessity.
Draw the following: (i) Half plan at foundation.(ii) Longitudinal section.
2 Design and draw half plan at foundation level and longitudinal section across siphon barrel of a siphon a product type-III with the flowing data:

Canal details:

Discharge	= 35 cumec
Bed width	$=20.00$ meters
Bed level	$=+40.00$
Full supply level	$=+42.00 \mathrm{~m}$
Ultimate bed level	$=+39.75$ (U.B.L)
Ultimate full supply level	$=+42.50$ (U.F.S.L)
Average velocity in the canal	$=0.83 \mathrm{~m} / \mathrm{sec}$
Left bank top width	$=5.00$ meters
Canal side slopes both inside and outside	= 2:1 in embankment with outside minimum cover of 1 m over the hydraulic gradient.
Top of canal bank	+ 43.50
Drain details:	
Catchment area	$=8.0 \mathrm{~km}^{2}$
Maximum computer discharge	$=60 \mathrm{~m}^{3} / \mathrm{sec}$
Maximum flood level of the drain at the site crossing	site crossing = + 39.75(observed)
Hard soil available at	$=+37.00$
Average ground level on flanks of drain	$=+38.00$

B.Tech IV Year II Semester (R09) Regular Examinations, March/April 2013

DESIGN \& DRAWING OF IRRIGATION STRUCTURES
(Civil Engineering)
Time: 3 hours
Max Marks: 70
Answer any ONE question
All questions carry equal marks

1 Design a canal drop (notch type) of 2 m with the following data and draw half plan at top and longitudinal section.

Hydraulic particulars	U/S canal	D/S canal
Full supply discharge	$4.0 \mathrm{~m}^{3} / \mathrm{s}$	$4.0 \mathrm{~m}^{3} / \mathrm{s}$
Bed width	6.0 m	6.0 m
Bed level	+10.00 m	+8.00 m
Full supply depth	1.50 m	1.50 m
Full supply level	+11.50 m	+9.50 m
Top level of bank	+12.50 m	+10.50 m
Top width of bank	2 m	2 m
Half supply depth	1.0 m	1.0 m

Ground level at the site $=+10.50 \mathrm{~m}$
Good soil for foundation is available at $=+8.50 \mathrm{~m}$

2 Design a regulator-cum-road bridge with the following data and draw half plan at foundation and longitudinal section.

Hydraulic particulars	U/S canal	D/S canal
Full supply discharge	$20 \mathrm{~m}^{3} / \mathrm{s}$	$16 \mathrm{~m}^{3} / \mathrm{s}$
Bed width	15.0 m	15.0 m
Bed level	+20.00 m	+20.00 m
Full supply depth	2 m	1.75 m
Full supply level	+22.00	+21.75
Top level of bank	+23.00	+22.75

Top widths of banks are the same as those on the upstream side. The regulator carries a road way single lane designed for I.R.C loading class 'A'. Provide clear free board of one meter above F.S.L for the road bridge.
The right bank is 5 m wide and left bank is 2 m wide on both U/S and D/S. Good foundation soil is available at +19.00 m and ground level +22.0 m .

