B.Tech II Year II Semester (R07) Supplementary Examinations, April/May 2013

EM WAVE AND TRANSMISSION LINES
(Electronics and Communication Engineering)
Time: 3 hours
Max Marks: 80
Answer any FIVE questions
All questions carry equal marks

1 (a) State and prove Gauss's law. Explain Gauss's law in both integral and differential forms and applications.
(b) Discuss the salient features and limitations of Gauss's law.

2 (a) Define Ampere's force law and establish the associated relations.
(b) Derive an expression for the magnetic field due to a solenoid at any point on its axis. Hence obtain the relation for an infinitely long solenoid case.

3 (a) Explain displacement current and displacement current density.
(b) In a given lossy dielectric medium, conduction current density $\mathrm{J}_{\mathrm{c}}=0.02 \sin 10^{9} \mathrm{t}$ $\left(\mathrm{A} / \mathrm{m}^{2}\right)$. Find the displacement current density if $\sigma=10^{3} \mathrm{~s} / \mathrm{m}$ and $\varepsilon_{\mathrm{r}}=6.5$.

4 (a) Explain the wave propagation in good conductors.
(b) A plane wave propagating through the medium with $\varepsilon_{r}=8, \mu_{r}=2$ has $E=0.5 e^{-z / 3}$ $\sin \left(10^{8} t-\beta z\right) a_{x} V / m$. Determine:
(i) β
(ii) wave velocity
(iii) loss tangent (iv) intrinsic impedance

5 (a) Explain the surface impedance of good conductor.
(b) What is meant by surface impedance? Explain its importance.

6 (a) Write down the properties on TEM wave.
(b) Write a short notes on: (i) Wave impedances. (ii) Transverse \& axial fields.

7 (a) State the important properties of the infinite line.
(b) Derive the relationship between $\gamma, Z_{o c}$ and $Z_{\text {sc }}$.
(c) A voltage of 45 V is applied to 10 km long field quad cable. The receiving end voltage is 7.868 V and it lags behind by 110.2 V . Calculate the attenuation and phase constants of the cable if it is properly terminated.

8 (a) A line having $Z_{o}=50 \Omega$ is terminated in load impedance $(75+j 75) \Omega$. Determine the reflection coefficient and voltage standing wave ratio.
(b) A line with $Z_{0}=692 \angle-12^{0}$ is terminated in 200Ω resistor. Determine K and S.

