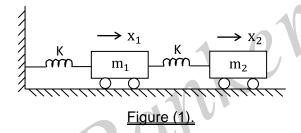
Code: 9A01705

R09

B.Tech IV Year I Semester (R09) Supplementary Examinations, May 2013

EARTHQUAKE RESISTANT DESIGN

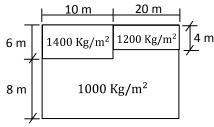

(Civil Engineering)

Time: 3 hours Max. Marks: 70

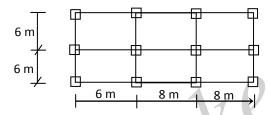
Answer any FIVE questions
All questions carry equal marks

- 1 (a) What is damping?
 - (b) Explain the dynamic response of spectrum representation for elastic systems.
- Determine the natural frequency and mode shapes for different modes for system shown in figure (1). $(m_1 = m_2 = m)$

- In earthquake analysis explain the systems with 'SDOF' and formulate the equation of motion for 'SDOF'.
- 4 (a) According to IS 1893-2002 (part 1), explain the provisions of torsion against the earthquake resistant of buildings.
 - (b) According to IS1893-2002 (part 1), explain the design of lateral force and distribution of design force.
- 5 (a) Explain the causes and effects of earthquake.
 - (b) Explain plate tectonic theory and its mechanism.
- Design reinforcement for column of size 450 X 450 mm, subjected to following forces. Column has unsupported length of 3.5 m and is braced against side sway in both directions. Use m-25 grade concrete and Fe415steel.


	D.L	L.L	Sesmic load
Axial load (kN)	950	700	550
Moment (kN-m)	50	45	100

Contd. in Page 2


Code: 9A01705

R09

(a) For building shown in fig. locate centre of mass. The building has non uniform distribution of mass as shown in fig.

(b) A plan of a simple one-storey building is shown in fig. All columns and beams have same C/S. Find its centre of stiff mess.

Design a shear wall for a '5' storey building for following data. Storey Shear at 8 different levels are as follows:

Storey No.	V1	2	3	4	5
Storey shear (KN)	5	10	30	80	140

Length of shear wall

 $= 7.5 \, \text{m}$

Storey height

= 3m

Seismic weight of building $= 55 \times 10^3 \text{ kN}$

Axial load on shear wall

 $= 3 X 10^3 kN$

Building situated at Delhi. Use m-20 grade concrete and Fe415 steel.