ELECTRICAL CIRCUITS

(Common to EEE, EIE, E.Con.E, ECE and ECC)
Time: 3 hours
Max. Marks: 70
Answer any FIVE questions
All questions carry equal marks
1 (a) Write a note on capacitor and V-I relationship associated with it.
(b) A non alternating periodic waveform has been shown in figure. Find its form factor.

2 (a) A resistance R is connected in series with a parallel circuit comprising two resistances of 12 and 8 ohms. The total power dissipated in the circuit is 700 Watts when the applied voltage is 200 V . Calculate the value of R.
(b) Using nodal analysis, determine the power supplied by 8 V voltage source.

3 (a) Explain significance of average value.
(b) Find RMS and average value of the following wave form.

Page 1 of 2

4 (a) Give the expression for frequency and current at resonance in parallel resonance circuit.
(b) A RLC series circuit consists of $R=50$ ohms $L=0.16 \mathrm{H}$ and $\mathrm{C}=4$ micro farads. Calculate resonant frequency, quality factor, band width and half power frequencies.

5 (a) Explain dynamically induced emf and statically induced emf.
(b) Find the AT required to produce of 0.6 mwb in the air gap of a magnetic circuit which has an air gap of 0.4 mm . The iron ring has $5 \mathrm{~cm}^{2}$ cross section and 50 cm mean length, take $\mu_{\mathrm{r}}=2000$ and leakage coefficient is 1.2 and exciting current is 2.5 A , find out number of turns.

6 (a) Write the properties of tie-set matrix and cut-set matrix.
(b) Using mesh analysis, calculate current through all the elements using mesh analysis.

7 (a) Write limitations of Norton's theorem.
(b) In the network shown, find the value of R_{L} for maximum power transfer. What is the value of maximum power?

$8 \quad$ Find the voltage across 20Ω resistor using superposition theorem and verify it using nodal analysis.

Page 2 of 2

