B.Tech II Year II Semester (R07) Supplementary Examinations, April/May 2013

FLUID MECHANICS AND HYDRAULIC MACHINERY
(Mechanical Engineering)
Time: 3 hours
Max. Marks: 80
Answer any FIVE questions
All questions carry equal marks

1 (a) Explain any four properties of fluids.
(b) What are differential manometers? Explain in brief.

2 (a) Derive continuity equation for one dimensional flow.
(b) A pipe of diameter 500 mm carries water at a velocity of $30 \mathrm{~m} / \mathrm{s}$. The pressure at the points A and B are given as $29.43 \mathrm{~N} / \mathrm{cm}^{2}$ and $22.563 \mathrm{~N} / \mathrm{cm}^{2}$ respectively, while the datum head at A and B are 26 m and 28 m . Find the loss of head between A and B.

3 Find the discharge of water flowing through a pipe 30 cm diameter placed in an inclined position where a venturi meter is inserted, having a throat diameter of 15 cm . The difference of pressure between the main and throat is measured by a liquid of $\mathrm{G}=0.6 \mathrm{in}$ an inverted U-tube which gives a reading of 30 cm . The loss of head between the main and the throat is 0.3 times the kinetic head of the pipe.

4 (a) Prove that the force exerted by a jet of water on a fixed semi-circular plate in the direction of the jet when the jet strikes at the centre of the semi-circular plate is two times the force exerted by the jet on a fixed vertical plate.
(b) A jet of water of diameter 80 mm moving with a velocity of $30 \mathrm{~m} / \mathrm{s}$ strikes a fixed plate in such a way that the angle between the jet and plate is 60°. Find the force exerted by the jet on the plate in the direction normal to the plate and in the direction of the jet.
$5 \quad$ What is meant by hydro electric scheme and explain the various types of plants?

6 Explain pelton wheel in detail with a neat sketch.

7 (a) Explain governing of turbines.
(b) A turbine develops 9000 KW when running at 10 rpm . The head on the turbine is 25 m . If the head on the turbine is reduced to 16 m , find the speed and power developed by the turbine.

8 A centrifugal pump has the following dimensions:
Inlet radius $=84 \mathrm{~mm}$, outlet radius $=168 \mathrm{~mm}$, width of impeller at the inlet $=50 \mathrm{~mm}$, $\beta_{1}=0.45$ radians, $\beta_{2}=0.25$ radians, width of impeller at outlet $=50 \mathrm{~mm}$. Assuming shock less entry determine the discharge and the head developed by the pump when the impeller rotates at 90 radians/second.

