Code: ICT 9A04303

B.Tech II Year I Semester (R09) Supplementary Examinations, May 2013

PROBABILITY THEORY & STOCHASTIC PROCESSES

(Electronics & Communication Engineering)

Time: 3 hours Max. Marks: 70

> Answer any FIVE questions All questions carry equal marks

- (a) Explain about theorem of total probability.
 - (b) Given that two events A₁ and A₂ are statistically independent, show that:
 - (i) A_1 is independent of \overline{A} . (ii) $\overline{A_1}$ is independent of A_2 . (iii) $\overline{A_1}$ is independent of $\overline{A_2}$.
- Write short notes on binomial distribution. (a)
 - A random variable x has the following distribution. (b)

 3									
хi	_			_		5	_	7	8
p(xi)	а	3a	5a	7a	9a	11a	13a	15a	17a

- (i) Find 'a'
- (ii) Find $P(X \le 3)$, $P(X \ge 3)$ and P(0 < X < 5)
- (iii) Find the smallest value of 'x' for which $P(X \le x) > 0.5$)
- (iv) Find the CDF $F_X(x)$.
- Write short notes on central moments and moments about the origin. 3 (a)
 - A random variable X has a probability density (b)

$$f_X(x) = \begin{cases} (1/2)\cos(x) & -\pi/2 < x < \pi/2 \\ 0, & else \ where \end{cases}$$

For the function g(X) = 2X⁴

- (i) Find the mean value. (ii) Find the variable.
- Write short notes on sum of two random variables. 4 (a)
 - Let $f_{XY}(x, y) = x + y$ for $0 \le x \le 1$, $0 \le y \le 1$ elsewhere.

Find the conditional density of: (i) X given Y. (ii) Y given X.

- 5 (a) What is a linear transformation explain interns of Gaussian random variable.
 - Random variables X and Y have the joint desnity (b)

$$f_{XY}(x,y) = \begin{cases} \binom{1}{24} & 0 < x < 6 \text{ and } 0 < y < 4 \\ 0, & else \text{ where} \end{cases}$$
 What is the expected value of the function $g(X,Y) = (XY)^2$?

- 6 (a) Define and differentiate between random variable and random process.
 - A random process is defined as $X(t) = A \cos(\omega t + \theta)$ where A is a constant and '\theta' is a (b) random variable, uniformly distributed over $(-\pi,\pi)$ check X(t) for stationarity.
- 7 Explain the cross covariance and correlation coefficient. (a)
 - Two random processes U(t) and V(t) are defined as U(t) = X(t) + Y(t) and V(t) = 2 X(t) + 3Y(t), where X(t) and Y(t) are two orthogonal stationary processes. $R_{uv}(\tau)$, $R_{vv}(\tau)$, $R_{uv}(\tau)$ in terms of $R_{XX}(\tau)$ and $R_{YY}(\tau)$.
- Derive the relationship between cross-power spectrum and cross-correlation function. (a)
 - The auto correlation function of an a periodic random process is $R_{XX}(\tau) = exp\left[-\frac{x^2}{2\sigma^2}\right]$. Find (b) the PSD and average power of the signal.