Code: ICT 9A04406

ICT

B.Tech II Year II Semester (R09) Supplementary Examinations, April/May 2013 **ELECTROMAGNETIC THEORY & TRANSMISSION LINES**

(Electronics and Communication Engineering)

Time: 3 hours

Max Marks: 70

Answer any FIVE questions All questions carry equal marks

- 1 (a) Give the limitation of Gauss's law? And discuss some of its applications.
 - (b) Determine the charge density due to the following electric flux densities

(i)
$$D = 6xyi_x + 4y^2 i_y$$

(ii)
$$D = r \sin \phi i_r + 2r \cos \phi i_\phi + 3z^2 i_z$$

- The region between parallel plates of distance 'd' is filled with two dielectrics with conductivities σ_1 , σ_2 2 (a) for 0 < x < t and t < x < d respectively, find the boundary conditions to be satisfied at x = t, find potentials in the two regions.
 - (b) Find the flux density at a point (0, 0, 5) due to a point charge of 10 nC at (0, 0, 2) and a line charge of density 10 nC/m along x-axis?
- Derive an expression for magnetic field at a point due to two long straight parallel wires carrying equal 3 (a) and opposite currents.
 - (b) A conductor carries a current of 5 amps along the x-direction. Find the force on it if it is subjected to a flux density of 1 Wb/m² along z-direction.
- 4 (a) Find the capacitance of an isolated sphere of radius 'R'.
 - (b) Considering earth as a conducting sphere of radius 6550 km, calculate the surface charge on it?
- 5 A uniform plane wave is propagating in a medium having the properties $\sigma = 1$ s/m, $\varepsilon_r = 36$, $\mu_r = 4$. The electric field is given by $E = 100 e^{-\alpha x} \cos (10\Pi \times 10^8 \text{ t-}\beta x) a_z \text{ V/m}$. Determine α , and β and write time domain expression for the associated magnetic field vector.
- A uniform sinusoidal plane wave in air with the following phasor expression for electric field intensity 6 $E_i(x, z) = a_v 10e^{-i(6x + 8z)}$ v/m is incident on a perfectly conducting plane at z = 0.
 - (i) Find frequency and wave length of the wave.
 - (ii) Determine the angle of incidence.
 - (iii) Find $E_r(x, z)$ and $H_r(x, z)$ of the reflected wave.
- An open wire transmission line terminated in its characteristic impedance has the following primary 7 constants at 1 KHz. R = 6 Ω /km, L = 2 mH/km, C = 0.05 μ F/km, and G = 0.5 x 10⁻⁶ mhos. Calculate the phase velocity and the attenuation in db suffered by a signal in a length of 100 km.
- A transmission line 100 m long operating at 100 MHz has the following constants Z_0 = 50 \angle -5 0 , α = 8 0.001 neper/m, $\beta = \frac{\pi}{1.8}$ rad/m. The transmission line is now connected to a load and the value of voltage reflection coefficient measured at a distance of 4 m away from the load is found to be $0.5 \angle 30^{\circ}$. Calculate the input impedance of the line.