B.Tech I Year (R07) Supplementary Examinations, June 2013

MATHEMATICS - I
(Common to all branches)
Time: 3 hours
Max. Marks: 80

> Answer any FIVE questions
> All questions carry equal marks
> $* * * * *$

1 (a) Solve: $\frac{d y}{d x}=\frac{x+2 y-3}{2 x+y-3}$.
(b) Find particular member or orthogonal trajectories of $\mathrm{x}^{2}+\mathrm{cy}^{2}=1$ passing through the point $(2,1)$.

2 (a) Solve: $y^{\prime \prime}+4 y^{\prime}+20 y=23 \sin t-15 \cos t, y(0)=0, y^{\prime}(0)=-1$.
(b) Solve: $\frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+2 y=x e^{x} \sin x$

3 (a) Show that $\mathrm{h}<\sin ^{-1} \mathrm{~h}<\frac{\mathrm{h}}{\sqrt{\left(1-\mathrm{h}^{2}\right)}}$ for $0<h<1$.
(b) Verify Lagrange's mean value theorem for $f(x)=\left\{\begin{array}{c}x \sin 1 / x(x \neq 0) \\ 0(x=0)\end{array}\right.$ in $[-1,1]$.

4 (a) Show that the radius of curvature at any point of the astroid $x=a \cos ^{3} \theta, y=a \sin ^{3} \theta$ is equal to three times the length of the perpendicular from the origin to the tangent at that point.
(b) If $\sqrt{\mathrm{r}}=\sqrt{\mathrm{a}} \cos (\theta / 2)$, prove that $\rho=\frac{2}{3} \sqrt{\mathrm{ar}}$.

5 (a) Find the length of the arc of the parabola $y^{2}=4 a x$ cutoff by the line $3 y=8 x$.
(b) Evaluate $\iint \frac{r d r d \theta}{\sqrt{a^{2}+r^{2}}}$ over one loop of the lemniscates $r^{2}=a^{2} \cos 2 \theta$.

6 (a) Test the convergence of the following series: $\sum_{n=1}^{\infty} \frac{x^{2 n}}{(n+1) \sqrt{n}}$.
(b) Show that the given exponential series $1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots$ converges absolutely for all x.

7 (a) By transforming into triple integral, evaluate $\iint_{S} x^{3} d y d z+x^{2} y d z d x+x^{2} z d x$ dy where S is the closed surface consisting of the cylinder $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{a}^{2}$ and the circular discs $\mathrm{z}=0, \mathrm{z}=\mathrm{b}$.
(b) Verify Green's theorem for $\int_{c}\left[\left(x y+y^{2}\right) d x+x^{2} d y\right]$, where C is bounded by $y=x$ and $y=x^{2}$.

8 (a) Find: L[$\left.\frac{\mathrm{e}^{-3 t} \sin 2 t}{\mathrm{t}}\right]$.
(b) Evaluate: $\mathrm{L}^{-1}\left[\frac{(\mathrm{~S}+1) \mathrm{e}^{-\pi s}}{\mathrm{~s}^{2}+\mathrm{s}+1}\right]$.
(c) Using convolution theorem, find $\mathrm{L}^{-1}\left\{\frac{1}{(\mathrm{~s}+\mathrm{a})(\mathrm{s}+\mathrm{b})}\right\}$.

