Code: 9ABS301

RO9

B.Tech II Year I Semester (R09) Supplementary Examinations, May 2013 **MATHEMATICS - II**

(Common to AE, BT, CE and ME)

Time: 3 hours

Max. Marks: 70

Answer any FIVE questions All questions carry equal marks

- Show that the matrix $A = \begin{vmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{vmatrix}$ satisfies Cayley Hamilton theorem. 1
- 2 (a) Prove that every square matrix is uniquely expressed as the sum of a Hermitian matrix and Skew-Hermitian matrix.
 - (b) Find the Eigen vectors of the Hermitian matrix A =. $\begin{bmatrix} a & b+ic \\ b-ic & k \end{bmatrix}$.
- (a) Expand $f(x) = x\sin x$, $0 < x < 2\pi$ as a Fourier series. 3
- (b) Prove that in $(-\pi,\pi)$, $x\cos x = \frac{-1}{2}\sin x + 2\sum_{n=2}^{\infty}\frac{(+1)^n}{n^2-1}\sin nx$.

 Using Fourier integral show that $e^{-ax} e^{-bx} = \frac{2(b^2 a^2)}{\pi}\int_0^{\infty}\frac{\lambda \sin \lambda x d\lambda}{(\lambda^2 + a^2)(\lambda^2 + b^2)}$, a,b,>0. 4
- A string of length L is fastened at both ends A and C. At a distance 'b' from the end A, the 5 string is transversely displaced to a distance 'd' and is released from rest when it is in this position. Find the equation of the subsequent motion.
- (a) Find the roots of the equation $x^3 4x + 1 = 0$ using Bisection method. 6
 - (b) Given x = 1, 2, 3, 4 and f(x) 1, 2, 9, 28 respectively find f(3.5) using 'Lagrange' method of 2nd and 3rd order degree polynomials.

5. a.c. a.c.g. c.c			20171101110110	
X	1	2	3	4
f(x)	1	2	9	28

- Find the area bounded by the curve $y = x^3 x + 1$, x-axis between x = 0 and x = 1.2 by 7
 - (i) Trapezoidal rule. (ii) Simpson $\frac{1}{3}$ rule. (iii) Simpson $\frac{3}{8}$ Rule and compare the results.
- Employ Taylor's series method to obtain approximate value of y(1.1) and y(1.3), for the 8 differential equation $y' = xy^{1/3}$, y(1) = 1. Compare the numerical solution obtained with exact solution.