B.Tech II Year I Semester (R09) Supplementary Examinations, May 2013

MATHEMATICS - III
(Common to EEE, EIE, E.Con.E, ECE and ECC)
Time: 3 hours
Max Marks: 70

Answer any FIVE questions
 All questions carry equal marks

1 (a) Prove that $\Gamma(n) \Gamma(1-n)=\frac{\pi}{\sin n \pi}$.
(b) State and prove Rodrigne's formula.

2 (a) If $f(z)$ is a regular function of z, prove that $\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}|f(z)|^{2}=4\left|f^{1}(z)\right|^{2}$
(b) Define an analytic function. Find the analytic function $f(z)=u+i v$ given $u=a(1+\cos \theta)$.

3 (a) Find all values of z which satisfy $\sin z=2$.
(b) Find all principal values of $(1+i \sqrt{3})^{(1+i \sqrt{3}}$.

4 (a) Evaluate $\int_{0,0}^{1,3} 3 x^{2} y d x+\left(x^{3}-3 y^{2}\right) d y$ along the curve (i) $y=3 x$. (ii) $y=3 x^{2}$.
(b) Evaluate $\int_{c} \frac{d z}{z^{8}(z+4)}$ where C is the circle $|z|=2$.

5 (a) Obtain the Taylar series expansion of: $f(z)=\frac{e^{z}}{z(z+1)}$ about $z=2$.
(b) Define singular point, expand $f(z)=\frac{e^{2 z}}{(z-1)^{3}}$ as Laurent's series about the singular point $z=1$.

6 (a) Evaluate $\int_{c} \frac{4-3 z}{z(z-1)(z-2)} d z$ where C is the circle $|z|=\frac{3}{2}$ using residue theorem.
(b) Evaluate by contour integration $\int_{0}^{\infty} \frac{d x}{1+x^{2}}$

7 (a) Use Rouche's theorem to show that the equation $z^{5}+15 z+1=0$ has one root in the disk $|z|<\frac{3}{2}$ and four roots in the annulus $\frac{3}{2}<|z|<2$.
(b) State and prove fundamental theorem of algebra.

8 (a) Show that the function $\mathrm{W}=\frac{4}{2}$ transform the straight line $x=c$ in the z-plane in to a circle in the w-plane.
(b) Find the bilinear transformation that maps the points $1, i,-1$ in to the points $2, i,-2$.

