B.Tech III Year I Semester (R09) Supplementary Examinations, May 2013

MATHEMATICS FOR AEROSPACE ENGINEERS

(Aeronautical Engineering)
Time: 3 hours
Max Marks: 70
Answer any FIVE questions

All questions carry equal marks

1 (a) Prove that $X J_{\mathrm{n}}^{\prime}(x)=-n J_{\mathrm{n}}(x)+x J_{\mathrm{n}-1}(x)$.
(b) Prove that $\frac{1+z}{z \sqrt{1-2 x z+z^{2}}}-\frac{1}{2}=\sum_{n-0}^{\infty}\left[P_{n}(x)+P_{n+1}(x)\right] z^{n}$.

2 (a) Show that $f(z)=\frac{x y^{2}(x+i y)}{x^{2}+y^{4}}, z \neq 0$

$$
0 \quad \text { if } z=0 .
$$

Is not analytic at $\mathrm{z}=0$ although $\mathrm{C}-\mathrm{R}$ equations are satisfied at the origin.
(b) Find the imaginary part whose real part is $e^{X}(x \cos y-y \sin y)$.

3 (a) Using Cauchy's integral formula evaluate $\int_{c} \frac{z^{4}}{(z+1)(z-i)^{2}} d z$.
Where C is the ellipse $9 x^{2}+4 y^{2}=36$
(b) Evaluate $\int_{0}^{1+i} z^{2} d z$ along $y=x^{2}$.

4 (a) Find the Laurent series expansion of the function $f(z)=\frac{z^{2}-6 z-1}{(z-1)(z-3)(z+2)}$ in the region $3<|z+2|<5$.
(b) Find the residue of $f(z)=\frac{z e^{z}}{(z+2)^{4}(z-1)}$ at each pole.

5 (a) Show that the function $\mathrm{W}=\frac{4}{z}$ transforms the straight line $\mathrm{x}=\mathrm{c}$ in the z plane into a circle in w-plane.
(b) Find the bilinear transformation which maps the points $(-1,0,1)$ into the points $(0, I, 3 i)$?

6 (a) Prove that metric tensor is a covariant symmetric tensor of order two and conjugate tensor is a contravariant symmetric tensor of order two.
(b) Prove the transformation law of Christoffel symbol of second kind.

7 (a) A problem in statistics is given to 3 students A, B, C whose chances of solving it are $\frac{1}{2}, \frac{3}{4}$ and $\frac{1}{4}$ respectively. What is the probability that the problem is solved?
(b) In a factory A produces 40% of the output and machine B produces 60%. On the average 9 items in 1000 produced by A are defective and 1 item in 250 produced by B is defective. An item drawn at random from a day's output is defective. What is the probability that it was produced by A or B?

8 (a) For the discrete probability distribution:

X	0	1	2	3	4	5	6
F	0	2 k	2 k	3 k	K^{2}	$2 \mathrm{k}^{2}$	$7 \mathrm{k}^{2}+\mathrm{k}$

Find: (i) K (ii) mean (iii) variance.
(b) If the masses of 300 students are normally distributed with mean 68 kgs and standard deviation 3 kgs how many students have masses:
(i) Greater than 72 Kg .
(ii) Less than or equal to 64 Kg .
(iii) Between 65 and 71 Kg .

