Code: 9A21501

B.Tech III Year I Semester (R09) Supplementary Examinations, May 2013

MATHEMATICS FOR AEROSPACE ENGINEERS

(Aeronautical Engineering)

Time: 3 hours

Max Marks: 70

Answer any FIVE questions All questions carry equal marks

1 (a) Prove that
$$X J'_n(x) = -nJ_n(x) + xJ_{n-1}(x)$$
.
(b) Prove that $\frac{1+z}{1-x} = \frac{1}{x} - \sum_{n=1}^{\infty} [D_n(x)] + D_n(x)$

- (b) Prove that $\frac{1+z}{z\sqrt{1-2xz+z^2}} \frac{1}{2} = \sum_{n=0}^{\infty} [P_n(x) + P_{n+1}(x)]z^n$.
- (a) Show that $f(z) = \frac{xy^2(x+iy)}{x^2+y^4}, z \neq 0$ 2 $if \, z = 0.$

Is not analytic at z = 0 although C-R equations are satisfied at the origin.

- (b) Find the imaginary part whose real part is $e^{X}(x \cos y y \sin y)$.
- (a) Using Cauchy's integral formula evaluate $\int_c \frac{z^4}{(z+1)(z-i)^2} dz$. 3 Using Cauchy's integration Where C is the ellipse $9x^2 + 4y^2 = 36$
 - (b) Evaluate $\int_0^{1+i} z^2 dz$ along $y = x^2$.
- (a) Find the Laurent series expansion of the function $f(z) = \frac{z^2 6z 1}{(z-1)(z-3)(z+2)}$ in the region 4 3 < |z + 2| < 5.
 - (b) Find the residue of $f(z) = \frac{ze^z}{(z+z)^4(z-1)}$ at each pole.
- (a) Show that the function $W = \frac{4}{7}$ transforms the straight line x = c in the z plane into a circle 5 in w-plane.
 - (b) Find the bilinear transformation which maps the points (-1, 0, 1) into the points (0, I, 3i)?
- (a) Prove that metric tensor is a covariant symmetric tensor of order two and conjugate 6 tensor is a contravariant symmetric tensor of order two.
 - (b) Prove the transformation law of Christoffel symbol of second kind.

Contd. in Page 2

Page 1 of 2

Code: 9A21501

- (a) A problem in statistics is given to 3 students A, B, C whose chances of solving it are 7 $\frac{1}{2}, \frac{3}{4}$ and $\frac{1}{4}$ respectively. What is the probability that the problem is solved?
 - (b) In a factory A produces 40% of the output and machine B produces 60%. On the average 9 items in 1000 produced by A are defective and 1 item in 250 produced by B is defective. An item drawn at random from a day's output is defective. What is the probability that it was produced by A or B?
- (a) For the discrete probability distribution: 8

Х	0	1	2	3	4	5	6
F	0	2k	2k	3k	K ²	2k ²	7k ² + k

Find: (i) K (ii) mean (iii) variance.

(b) If the masses of 300 students are normally distributed with mean 68 kgs and standard h. ****** deviation 3 kgs how many students have masses:

(i) Greater than 72 Kg.

- (ii) Less than or equal to 64 Kg.
- (iii) Between 65 and 71 Kg.