Code: 9A14501

R09

B.Tech III Year I Semester (R09) Supplementary Examinations, May 2013

NUMERICAL METHODS

(Mechatronics)

Time: 3 hours

Max. Marks: 70

Answer any FIVE questions All questions carry equal marks

- 1 (a) Find a root of the equation $2x = \cos x + 3$ correct to three decimal places by iteration method.
 - (b) Find a root of the equation $x^2 4x 10 = 0$ by using bisection method.
- 2 (a) Apply Jacobi iteration method to solve the equations:

$$3x_1 - 2x_2 = 5;$$

$$-x_1 + 2x_2 - x_3 = 0$$

$$-2x_2 + x_3 = -1$$

(b) Apply Gauss – Jordan method to solve the equations:

$$x + y + z = 9;$$

 $2x - 3y + 4z = 13$
 $3x + 4y + 5z = 40$

3 (a) Show that:

(i)
$$\delta = E^{1/2} - E^{-1/2}$$

(ii)
$$\Delta - \nabla = \Delta \nabla = \delta^2$$

(iii)
$$hD = \log(1 + \Delta) = -\log(1 - \Delta) = \sin h^{-1}(\mu \delta)$$
.

(b) Use Lagrange's formula to find the form of f(x), given

x:	0	2	3	6
<i>f</i> (<i>x</i>):	648	704	729	792

4 (a) Fit a straight line of the form y = a + bx to the data:

х	1	2	3	4	6	8
ν	2.4	3.1	3.5	4.2	5.0	6.0

(b) Give the data points:

x_1	5	4	3	2	1
x_2	3	-2	-1	4	0
ν	15	-8	-1	26	8

Obtain a regression plane to fit the data.

5 (a) Find the first and second derivatives of f(x) at x = 1.5 for the following data.

<i>x</i> :	1.5	2.0	2.5	3.0	3.5	4.0
<i>f</i> (<i>x</i>):	3.375	7	13.625	24	38.875	59

(b) Evaluate $\int_0^{\pi/2} \sqrt{\sin \theta} \ d\theta$, using Simpson's rule with $h = \pi/12$.

Contd. in page 2

R09

Code: 9A14501

- 6 Employ Taylor's series method to obtain approximate value of 'y' at x = 0.1 and 0.2 for the differential equation $\frac{dy}{dx} = x - y^2$, y(0) = 1. (b) Use Adams – Bashforth method to find y (4, 4), given $5xy^1 + y^2 - 2 = 0$, y(4) = 1,
 - $y(4.1) = 1.0049, \ y(4.2) = 1.0097, \ y(4.3) = 1.0143.$
- 7 (a) Find the largest Eigen value and corresponding Eigen vector of the matrix.

 $\begin{bmatrix} -1 \end{bmatrix}$ by power method. 2

- Given the equation $\frac{d^2y}{dx^2} = e^{x^2}$ with y(0) = 0, y(1) = 0. Estimate the values of y(x) at x = 0.25 and x = 0.5 by finite difference method.
- 8 Solve the elliptic equation $u_{xx} + u_{yy} = 0$ for the following square mesh with boundary values as shown in the figure.

