Code: 9A03701

R09

B.Tech IV Year I Semester (R09) Supplementary Examinations, May 2013

OPERATIONS RESEARCH

(Mechanical Engineering)

Time: 3 hours

Max. Marks: 70

Answer any FIVE questions
All questions carry equal marks

1 Solve the following LP problem using big-M method:

Minimize
$$Z = 2x_1 + 9x_2 + x_3$$

Subject to $x_1 + 4x_2 + 2x_3 \ge 5$; $3x_1 + x_2 + 2x_3 \ge 4$; $x_1, x_2 \ge 0$.

2 Find the optimal solution for the following transportation problem. The cell entries represent the unit transportation cost in rupees from each source to each destination.

				Supply		
	3	4	6	8	9	20
From	2	10	1	5	8	30
FIOIII	7	11	20	40	3	15
	2	1	9	14	16	13
Demand	40	6	8	18	6	

A manufacturer, finds from his past records that the costs per year associated with a machine with a purchase price of Rs.50,000 are as given below:

	Year	1	2	3	4	5	6	7	8
4	Maintenance (Rs.)	15000	16000	18000	21000	25000	29000	34000	40000
	Scrap value in Rs.	35000	25000	17000	12000	10000	5000	4000	4000

Determine the optimum replacement policy.

4 Solve the following game by graphical method:

Contd. in Page 2

Code: 9A03701

R09

- An insurance company has 3 claims adjusters in their main office. Customers are found to arrive in Poisson manner at a rate of 5 per hour for settling claims against the company. The service time is found to have exponential distribution with a mean of 25 minutes. Claimants are processed on first come first served basis. Calculate:
 - (a) The average number of customers in the system.
 - (b) The average time a customer spends in the system.
 - (c) The average queue length.
 - (d) The average waiting time for customers.
- Find the optimum order quantity for a product for which the price breaks are as follows:

Quantity (units) Unit cost (Rs.)
$$0 < q < 650$$
 20 $650 \le q < 800$ 18.50 $800 \le q$ 17.50

The monthly demand for the product is 300 units, the cost of carrying inventory is 2% of the unit price of the item and the cost of ordering is Rs.400.

7 Solve the following LP problem by dynamic programming:

Maximize
$$f(x_1, x_2) = 4x_1 + 14x_2$$
;
Subject to $2x_1 + 7x_2 \le 21$;
 $7x_1 + 2x_2 \le 21$;
 $x_1 \ge 0, x_2 \ge 0$

- 8 (a) Define simulation. Explain various types of simulation.
 - (b) Explain briefly about simulation languages.
