B.Tech II Year II Semester (R09) Regular \& Supplementary Examinations, April/May 2013 PROBABILITY THEORY AND STOCHASTIC PROCESSES
(Electronics and Computer Engineering)
Time: 3 hours
Max Marks: 70
Answer any FIVE questions
All questions carry equal marks

1 (a) Define:
(i) Probability.
(ii) Certain event.
(iii) Impossible event.
(b) Define and explain the following with examples:
(i) Discrete sample space.
(ii) Continuous sample space.

2 (a) Explain with an example discrete, continuous and mixed random variables.
(b) Explain CDF with its properties.

3 Explain about the following:
(a) Expected value of a random variable.
(b) Explain value of a function of a random variable.

4 (a) Explain the conditional distribution of density functions for points and interval conditionin.
(b) Explain the statistical independence of two random variables.

5 (a) An event has six possible outcomes with probabilities $\mathrm{P} 1=1 / 2, \mathrm{P} 2=1 / 4, \mathrm{P} 3=1 / 8, \mathrm{P} 4$ $=1 / 16, P 5=1 / 32$ and $P 6=1 / 32$. Find the entropy of the system and also find the rate of information if there are 16 outcomes per second.
(b) Explain about bandwidth and SNR trade-off.

6
(a) What are the differences between determinate and non determinate random processes? Explain each with an example.
(b) Explain the classification of random process with neat sketches.

7 (a) State and prove the properties of cross correlation function.
(b) Prove the auto correlation function of a random process is even function of (\mathcal{T}).

8
Explain PSD and mention the properties of PSD with proofs.
B.Tech II Year II Semester (R09) Regular \& Supplementary Examinations, April/May 2013 PROBABILITY THEORY AND STOCHASTIC PROCESSES
(Electronics and Computer Engineering)
Time: 3 hours
Max Marks: 70
Answer any FIVE questions
All questions carry equal marks

1 (a) Explain the following:
(i) Random experiment. (ii) Trail. (iii) Event. (iv) Sample space.
(b) Find the probability of obtaining 14 with 3 dice using Baye's theorem.

2 Define and explain the following density functions:
(a) Binomial.
(b) Exponential.

3 (a) Probability density function of a random variable $\mathrm{X}=1 / 2 \sin x 0<x<\pi=0$ elsewhere find the mean mode and median for the distribution and also find the probability between 0 and $\pi / 2$.
(b) Two dice one thrown five times. If getting a double of is a success. Find the probability that getting the success (i) at least once. (ii) two times.

4 (a) State and explain 'Central limit theorem'.
(b) Explain the envelope of narrow band noise.

5 (a) Write short notes on joint moments about the origin.
(b) X ' is a random variable with mean ' 4 ' and variance ' 3 '. Another random variable ' Y ' is re ' X ' as $Y=2 X+7$. Determine: (i) $E\left[X^{2}\right]$ (ii) $E[Y]$ (iii) var [Y] (iv) $R X Y$.

6 (a) Differentiate WSS and SSS.
(b) Explain the classification of random process with neat sketches.

7 (a) Derive the expression for PSD and ACF of band pan white noise and plot them.
(b) Define various types of noise and explain.

8 (a) State and explain source coding theorem.
(b) Find the density function whose characteristic function is $\exp (-|t|)$.
B.Tech II Year II Semester (R09) Regular \& Supplementary Examinations, April/May 2013 PROBABILITY THEORY AND STOCHASTIC PROCESSES
(Electronics and Computer Engineering)
Time: 3 hours
Max Marks: 70
Answer any FIVE questions
All questions carry equal marks

1 (a) Explain the relative frequency definition and axiomatic definition of probability.
(b) If two events A and B are independent show that:
(i) A^{\prime} and B ' are independent.
(ii) A and B are independent.
(iii) A^{\prime} and B^{\prime} are independent.

2 (a) Define the joint distribution function. Explain how marginal density functions are computed given their joint distribution functions.
(b) Explain conditions for a function to be a random variable.

3 (a) Explain about moments of random variable.
(b) Explain the properties of characteristic function of a random variable.

4 (a) Differentiate marginal and conditional distributions functions.
(b) Find the value of constant b so that the function $f_{x, y}(x, y)=b x y^{2} \exp (-2 x y) u(x-$ 2) $u(y-1)$ is a valid joint probability density.

5 (a) Derive the relation between PSDs of input and output random process of an LTI system.
(b) $\mathrm{X}(\mathrm{t})$ is a stationary random process with zero mean and auto correlation $R_{X X}(T) e^{-2|T|}$ is applied to a system of function $\mathrm{H}(\mathrm{w})=\frac{1}{j w+2}$. Find mean and PSD of its output.

6 (a) What are the causes of thermal noise?
(b) What are the causes of short noise?

7 A random process is defined by $\mathrm{x}(\mathrm{t})=$ At where A is a continuous random variable uniformly distributed on $(0,1)$ and t represents time. Find
(a) $E[x(t)]$
(b) $R_{x x}[\mathrm{t}, \mathrm{t}+\tau]$
(c) Is the process stationary?

8 (a) Describe the channel capacity of a discrete channel.
(b) Explain Shannon-Fano algorithm to develop a code to increase average formation per bit.

B.Tech II Year II Semester (R09) Regular \& Supplementary Examinations, April/May 2013

 PROBABILITY THEORY AND STOCHASTIC PROCESSES(Electronics and Computer Engineering)
Time: 3 hours
Answer any FIVE questions
All questions carry equal marks

1 (a) Explain the following: (i) Random experiment. (ii) Trial. (iii) Event. (iv) Sample space.
(b) Find the probability of obtaining 14 with 3 dice using Baye's theorem.

2 (a) Write the distribution and density functions with properties.
(b) Discuss about uniform distribution and exponential distribution.

3 (a) Explain about moments of random variable.
(b) Explain the properties of characteristic function of a random variable.

4 (a) Explain the statistical independence of two random variables.
(b) A joint sample space for two random variables X and Y has four elements (1, 1), (2, 2), $(3,3)$, and $(4,4)$.
Probabilities of these events are $0.1,0.35,0.05$ and 0.5 respectively
(i) Find the probability of the event $\{x \leq 2.5, Y \leq 6\}$.
(ii) Find the probability of the event $\{x \leq 3\}$.

5 (a) Show that the mean value of weighted sum of random variables equal the weighted sum of mean values.
(b) Derive the marginal characteristic functions.

6 Discuss in detailed about:
(a) First order stationary random process.
(b) Second order and wide-sense stationary random process.

7 (a) What are the precautions to be taken in cascading stages of a network in the point of view of noise reduction?
(b) What is the need for band limiting the signal towards the direction increasing SNR?

8 (a) Describe the channel capacity of a discrete channel.
(b) Explain Shannon-Fano algorithm to develop a code to increase average formation per bit.

