B.Tech II Year II Semester (R07) Supplementary Examinations, April/May 2013

SWITCHING THEORY \& LOGIC DESIGN
(Electronics \& Communication Engineering)
Time: 3 hours
Max. Marks: 80
Answer any FIVE questions
All questions carry equal marks

1 (a) Solve for x :
(i) $(48)_{10}=(120)_{x}$
(ii) $(32)_{16}+(47)_{8}+(14)_{5}=(x)_{6}$
(b) What are the weighted and non-weighted codes? Explain with an example.

2 (a) Derive the Boolean expression for two inputs EX-OR gate to realize with two input NAND gates without using complimented variables and draw the circuit.
(b) Simplify the following expressions and implement them with NAND gate circuits:

$$
\text { (i) } \mathrm{F}=\mathrm{A} \overline{\mathrm{~B}}+\mathrm{ABD}+\mathrm{AB} \overline{\mathrm{D}}+\overline{\mathrm{A}} \overline{\mathrm{C}} \overline{\mathrm{D}}+\overline{\mathrm{A}} \mathrm{~B} \overline{\mathrm{C}}
$$

(ii) $G=B D+B C \bar{D}+A \bar{B} \bar{C} D$

3 (a) Simplify the Boolean expression using K-map: $F=\bar{A}+A B+A B \bar{D}+A \bar{B} \bar{D}+C$
(b) Obtain the simplified expression using K-map: $F=A B D+\bar{A} \bar{C} \bar{D}+\bar{A} B+\bar{A} C \bar{D}+A \bar{B} D$

4 (a) Realize the function: $F(A, B, C, D)=\bar{A} B+\bar{B} \bar{C}+A D$ using $8 X 1$ MUX.
(b) What are the encoders and explain 1X4 encoder with logic diagram and functional table.

5 (a) Give the comparison between PAL and PLA.
(b) Tabulate the PLA programming table for the Boolean functions listed below:
(i) $\mathrm{A}(x, y, z)=\xi(1,2,46)$
(ii) $\mathrm{B}(x, y, z)=\xi(0,1,6,7)$

6 (a) Give the transition table for RS Flip-Flop.
(b) Give the design of 4-bit ring counter and explain with the waveforms. Also give the applications of the ring counter.

7 (a) What are the Moore and Mealy machines? Compare them.
(b) What are the capabilities and limitations of finite state machines?

8 (a) Differentiate between ASM chart and a conventional flow chart.
(b) Explain in detail the ASM technique of designing a sequential circuit.

