R07

Code: R7100206
B.Tech I Year (R07) Supplementary Examinations December/January 2015/2016

ELECTRICAL CIRCUIT ANALYSIS
(Electrical Electronics Engineering)
(For 2008 regular admitted batch only)
Time: 3 hours
Max. Marks: 80
Answer any FIVE questions
All questions carry equal marks
1 (a) State and explain Kirchoff's laws.
(b) Resistors $R_{1}=10 \Omega, R_{2}=20 \Omega, R_{3}=30 \Omega$ are connected in star configuration. Find out the equivalent delta configuration.

2 (a) State and explain the Faraday's laws of electromagnetic induction.
(b) Two coupled coils, with $\mathrm{L}_{1}=20 \mathrm{mH}, \mathrm{L}_{2}=10 \mathrm{mH}$ and $\mathrm{k}=0.50$ are connected four different ways: series aiding, series opposing and parallel with both arrangements of winding sense. Obtain the equivalent inductance of the four connections.

3 (a) The current in an RL circuit with $R=12 \Omega$ and $i(t)=12 \sin (900 t)+7 \sin (2700 t)+\sin (4500 t)$. Determine the effective applied voltage and average power.
(b) Define resonance and derive the resonant frequency and quality factor for RLC circuit.

4 (a) Explain the concept of complex power. Define power factor. What is its significance in electrical circuits?
(b) A balanced 3-phase star connected load $8+j 6$ ohms per phase is connected to a three phase 230 V supply. Find the line current, power factor, active power, reactive power and total volt-amperes.

5 (a) Select a suitable tree and find cut set and tie set matrices for the graph shown in figure below:

(b) Explain the principle of duality with an example.

Contd. in page 2

Code: R7100206

6 (a) State and explain super position theorem.
(b) Apply super position theorem to the network shown below and find voltage $\vee \mathrm{AB}$.

(c) Verify reciprocity theorem for the network shown below.

7 (a) In the circuit shown below, the switch S is in position 1 for 0.01 seconds and then changed to position 2 . Find the time at which the current is zero.

(b) For an RC series circuit, a sinusoidal voltage $\mathrm{v}(\mathrm{t})=\mathrm{V} \mathrm{m} \sin \omega \mathrm{t}$ is applied at $\mathrm{t}=0$. Find the expression for transient current.

8 (a) Determine Y-parameters of the network shown below.

(b) The Z-parameters of a two port network are $Z_{11}=15 \Omega, Z_{22}=24 \Omega, Z_{12}=Z_{21}=6 \Omega$. Determine ABCD parameters.

