

Code: R7100207 R07

B.Tech I Year (R07) Supplementary Examinations December/January 2015/2016

BASIC ELECTRONIC DEVICES & CIRCUITS

(Electrical and Electronics Engineering) (For 2008 regular admitted batch only)

Time: 3 hours Max. Marks: 80

Answer any FIVE questions All questions carry equal marks

- 1 (a) Explain the electrostatic deflection in a cathode ray tube.
 - (b) The distance between the plates of a parallel plate capacitor is 1 cm. If a direct voltage of 1000 volts is applied between them, how long will it take for an electron to reach the positive plate?
- 2 (a) Draw the Piecewise linear equivalent circuit of diode and explain it.
 - (b) What are the two basic types of capacitance associated with PN junction? Explain them. Derive expressions for them.
- 3 (a) Explain the working of a π filter for full wave rectifier.
 - (b) A full wave rectifier produces an rms voltage of 10 V from a 50 Hz line source and feeds a resistive load of 1,100 Ω . If the filter uses a capacitance of C = 50 μ F, find dc voltage, voltage regulation and ripple output voltage.
- 4 (a) Explain about current components in transistor.
 - (b) Sketch and explain the basic structure of an N channel JFET. Show the circuit symbol for the JFET.
- 5 (a) NPN transistor in CE mode V_{CC} = 10 V, R_C = 2 k Ω and R_B = 100 k Ω , calculate of quiescent point and S for CE transistor with collector to base bias.
 - (b) Draw fixed biasing circuit of NPN transistor and explain it.
- 6 (a) If $h_{ie} = 2 \text{ k}\Omega$, $h_{fe} = 80$, $h_{re} = 10^{-4}$ and $h_{oe} = 10^{-5}$ mho $R_S = R_L = 1 \text{ k}\Omega$, Calculate: (i) A_i . (ii) A_v . (iii) R_i .
 - (b) How will you determine h parameters from the characteristics of CE configuration? Explain.
- 7 Explain the effect of negative feedback on the following:
 - (a) Input impedance.
 - (b) Output impedance.
 - (c) Voltage gain.
 - (d) Bandwidth.
- 8 (a) Draw the circuit for Wein bridge oscillator and hence obtain its condition of sustained oscillations.
 - (b) Why do we use a crystal in an oscillator circuit obtain the expression of the impedance and show its plot w.r.t the frequency?