B.Tech I Year (R07) Supplementary Examinations December/January 2015/2016

CLASSICAL MECHANICS

(Mechanical Engineering)
(For 2008 Regular admitted batch only)
Time: 3 hours
Max. Marks: 80

> Answer any FIVE questions
> All questions carry equal marks
> $* * * * *$

1 (a) Find the resultant of system of forces acting on a hook is given below. Find the resultant force and its direction.

Force (N)	200	185	130	100
Inclination with x-axis	$\mathrm{N} 35^{\circ} \mathrm{E}$	$\mathrm{S} 40^{\circ} \mathrm{E}$	$\mathrm{N} 45^{\circ} \mathrm{W}$	$\mathrm{S} 30^{\circ} \mathrm{W}$

(b) Determine the tension in cables $A B$ and $A C$ required to hold the 40 kg crate shown in figure.

$2 \quad A B C D E$ is a light string whose end A is fixed. The weights W_{1} and W_{2} are attached to the string at B and C and the string passes round a small smooth wheel at D carrying a weight 40 kN at the free end E . In the position of equilibrium, BC is horizontal and AB and CD make angles 150° and 120° with horizontal. Find (i) the tension in $A B, B C$ and $D E$ of the given string (ii) magnitudes of W_{1} and W_{2}.

For the plane area shown in figure below locate the centroid of the area.

Contd. in page 2

4 For the plane section shown in figure below determine the moment of inertia about its horizontal and vertical centroidal axes.

6 A train is traveling from A to D along the track. Its initial velocity at A is zero. The train takes 5 mins to cover the distance AB 2250 m length and 2.5 mins to cover the distance BC 3000 m in length. On reaching the station the brakes are applied and the train stops 2250 m beyond at D . Find the retardation on CD and time it takes the train to get from A to D and average speed for the whole distance.
$7 \quad$ An inextensible string passing over a smooth pulley as shown in figure joins two blocks. If the blocks are released simultaneously from rest, determine the velocity of block A after it has moved over 2 m and the tension in the string. Assume the coefficient of friction at the contact surface is 0.2 . Use work-energy principle.

Derive an expression for the equation of motion of a simple pendulum employing the principle of conservation of energy. Also find the frequency and time period.

