B.Tech I Year (R07) Supplementary Examinations December/January 2015/2016

ELECTRONIC DEVICES \& CIRCUITS

(Common to ECE, CSE, EIE, IT, E.Con.E, ECC, \& CSS)
(For 2008 regular admitted batch only)
Time: 3 hours
Max. Marks: 80

Answer any FIVE questions
 All questions carry equal marks

1 (a) What are the main parts of the CRT? Describe in detail.
(b) Analyze the motion of an electron under perpendicular electric and magnetic fields.

2 (a) A silicon diode is operated at a forward bias voltage of 0.5 V . Calculate the factor by which the current will be multiplied when the temperature is increased from 25 to $150^{\circ} \mathrm{C}$.
(b) Explain in detail PN junction energy band diagram.

3 (a) Compare half-wave, centre tapped full-wave and bridge rectifiers and explain full wave bridge rectifier operation with neat sketches.
(b) A DC power supply circuit is to be designed for the given specifications: $\mathrm{V}_{\mathrm{dc}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{dc}}=200 \mathrm{~mA}$. Take Si diodes and centre tap transformer. Assume necessary data.

4 (a) What are the differences between Bipolar junction transistor and field effect transistor? Explain JFET operation with suitable diagrams.
(b) Explain the construction and working principle of UJT.

5 (a) Explain various compensation techniques.
(b) In a CE germanium transistor find operating point for the circuit of potential divider bias arrangement with $R_{2}=R_{C}=5 \mathrm{k} \Omega, R_{E}=1 \mathrm{k} \Omega$ and $R_{1}=40 \mathrm{k} \Omega$.

6 (a) Using small signal model explain the operation of CE amplifier.
(b) A common collector amplifier has a resistance of $220 \mathrm{k} \Omega$ is connected between base of the transistor and the supply voltage. Its emitter resistance is $3.3 \mathrm{k} \Omega$. If $\mathrm{h}_{\mathrm{ie}}=1.275 \mathrm{k} \Omega$ and $\mathrm{h}_{\mathrm{fe}}=100$ are given, find A_{v}, A_{i}, R_{i} and R_{0} using hybrid parameter model.

7 (a) An amplifier has a mid-band gain of 125 and bandwidth of 250 kHz . Find the resulting bandwidth and gain if 4% of negative feedback is introduced. Give comments.
(b) Analyze current shut feedback amplifiers with discrete components.

8 (a) Explain in detail about the Hartley oscillator and derive its frequency of oscillation.
(b) A phase shift oscillator using BJT has $R_{L}=3.3 \mathrm{k} \Omega, R=5.6 \mathrm{k} \Omega$ and $c=0.01 \mu \mathrm{~F}$. Calculate frequency of oscillation and h_{fe} required for sustained oscillations.

