

Code: 9ABS104

R09

B.Tech I Year (R09) Supplementary Examinations December/January 2015/2016 MATHEMATICS - I

(Common to all branches)

Time: 3 hours

Max. Marks: 70

Answer any FIVE questions All questions carry equal marks

- 1 (a) Solve : $y^2 dx + (x^2 xy y^2) dy = 0$.
 - (b) Solve : $x^2 y dx (x^3 + y^3) dy = 0$.
- 2 (a) Solve the differential equation: $(2x-1)^3 \frac{d^3y}{dx^3} + (2x-1)\frac{dy}{dx} 2y = x$
 - (b) Solve the differential equation: $(1+x)^2 \frac{d^2 y}{dx^2} + (1+x) \frac{dy}{dx} + y = \sin 2[\log(1+x)].$
- 3 (a) Find the minimum value of u = x² + y² + z² when x + y + z = 3a.
 (b) Find the minimum value of u = x⁴ + y⁴ + z⁴ subject to xyz = a³.
- 4 (a) Trace the curve $r = a\cos 3\theta$. (b) Trace the curve $r^2 = a^2 \cos 2\theta$.
- 5 (a) Evaluate $\iint xy \, dx \, dy$ over the positive quadrant of the circle $x^2 + y^2 = a^2$.
 - (b) Evaluate the integral by changing the order of integration $\int_0^{\infty} \int_0^x x e^{-x^2/y} dy dx$.
- 6 (a) Find the Laplace transform of f(t) = t when $0 < t < \pi$ = $\pi - t$ when $\pi < t < 2\pi$ with period 2π . (b) Use Heaviside's expansion formula to find $L^{-1}\left\{\frac{2s^2-6s+5}{s^3-6s^2+11s-6}\right\}$.
- 7 (a) Solve the D.E. $y'' + 6y' + 9y = 6t^2e^{-3t}$, y(0) = 0, y'(0) = 0. Using Laplace transform. (b) Using Laplace transform, Evaluate $\int_0^\infty e^{-t} \frac{(2\sin t - 3\sinh t)}{t} dt$.
- 8 (a) Evaluate $div(r^n\overline{R})$, where $\overline{R} = xi + yj + zk$, $r = |\overline{r}|$.
 - (b) Apply Greens theorem to evaluate $\int_C e^{-x}(\sin y \, dx + \cos y \, dy)$, where C is the rectangle with vertices (0,0), $(\pi, 0)$, $(\pi, \frac{\pi}{2})$ and $(0, \frac{\pi}{2})$.

www.FirstRanker.com