Code: 9ABS104

B.Tech I Year (R09) Supplementary Examinations December/January 2015/2016

MATHEMATICS - I
(Common to all branches)
Time: 3 hours
Max. Marks: 70
Answer any FIVE questions
All questions carry equal marks
1 (a) Solve : $y^{2} d x+\left(x^{2}-x y-y^{2}\right) d y=0$.
(b) Solve : $x^{2} y d x-\left(x^{3}+y^{3}\right) d y=0$.

2 (a) Solve the differential equation: $(2 x-1)^{3} \frac{d^{3} y}{d x^{3}}+(2 x-1) \frac{d y}{d x}-2 y=x$
(b) Solve the differential equation: $(1+x)^{2} \frac{d^{2} y}{d x^{2}}+(1+x) \frac{d y}{d x}+y=\sin 2[\log (1+x)]$.

3 (a) Find the minimum value of $u=x^{2}+y^{2}+z^{2}$ when $x+y+z=3 a$.
(b) Find the minimum value of $u=x^{4}+y^{4}+z^{4}$ subject to $x y z=a^{3}$.

4 (a) Trace the curve $r=\operatorname{acos} 3 \theta$.
(b) Trace the curve $r^{2}=a^{2} \cos 2 \theta$.

5 (a) Evaluate $\iint x y d x d y$ over the positive quadrant of the circle $x^{2}+y^{2}=\mathrm{a}^{2}$.
(b) Evaluate the integral by changing the order of integration $\int_{0}^{\infty} \int_{0}^{x} x e^{-x^{2} / y} d y d x$.

6 (a) Find the Laplace transform of $f(t)=t$ when $0<t<\pi$

$$
=\pi-t \text { when } \pi<t<2 \pi \text { with period } 2 \pi .
$$

(b) Use Heaviside's expansion formula to find $L^{-1}\left\{\frac{2 s^{2}-6 s+5}{s^{3}-6 s^{2}+11 s-6}\right\}$.

7 (a) Solve the D.E. $y^{\prime \prime}+6 y^{\prime}+9 y=6 t^{2} e^{-3 t}, y(0)=0, y^{\prime}(0)=0$. Using Laplace transform.
(b) Using Laplace transform, Evaluate $\int_{0}^{\infty} e^{-t} \frac{(2 \sin t-3 \sinh t)}{t} d t$.

8 (a) Evaluate $\operatorname{div}\left(\boldsymbol{r}^{n} \overline{\boldsymbol{R}}\right)$, where $\bar{R}=\mathrm{xi}+\mathrm{yj}+\mathrm{zk}, \mathrm{r}=|\bar{r}|$.
(b) Apply Greens theorem to evaluate $\int_{C} e^{-x}(\sin y d x+\cos y d y)$, where C is the rectangle with vertices $(0,0),(\pi, 0),\left(\pi, \frac{\pi}{2}\right)$ and ($0, \frac{\pi}{2}$).

