Code: 9ABS105

B.Tech I Year (R09) Supplementary Examinations December/January 2015/2016

MATHEMATICAL METHODS
(Common to CSE, ECE, EEE, EIE, ECM, E.Con.E, IT \& CSS)
Time: 3 hours
Max. Marks: 70
Answer any FIVE questions
All questions carry equal marks
1 Verify Cayley Hamilton theorem for the matrix $\mathrm{A}=\left[\begin{array}{ccc}3 & 1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3\end{array}\right]$ and hence find A^{-1}.
2 Reduce the quadratic form $3 x_{1}{ }^{2}+3 x_{2}{ }^{2}+3 x_{3}{ }^{2}+2 x_{1} x_{2}+2 x_{1} x_{3}-2 x_{2} x_{3}$ to canonical form by orthogonal transformation and hence find the rank, index, signature and nature of the quadratic form.

3 (a) Use Largrange formula to calculate $f(3)$ from the following table.

x	0	1	2	4	5	6
$f(x)$	1	14	15	5	6	19

(b) Find a real root of $f(x)=x^{3}-4 x-9=0$ by bisection method.

4 Evaluate $\int_{0}^{1} \sqrt{1+x 4} \mathrm{dx}$ using Simpson's $\frac{3}{8}$ rule.

5 Use Runge-Kutta method of $4^{\text {th }}$ order to solve $\frac{d y}{d x}=1+y^{2}, y(0)=0$ on the interval $0 \leq x \leq 0.5$ with $h=0.1$.

6 (a) Expand $f(x)=x \sin x$, in $0<x<2 \pi$ as a Fourier series.
(b) If $F(s)$ is the complex Fourier transform of $\mathrm{f}(\mathrm{x})$, then prove that $F\{f(a x)\}=\frac{1}{a} F\left(\frac{s}{a}\right), a \neq 0$.

A homogeneous rod of conducting the material of length 100 cm has its ends kept at zero Temperature and the temperature initially is $u(x, 0)=\left\{\begin{array}{cc}x, & 0 \leq x \leq 50 \\ 100-x, & 50 \leq x \leq 100 .\end{array}\right.$. Find the temperature $u(x, t)$ at any time.

8 (a) If $Z\left(u_{n}\right)=\bar{u}(z)$, Prove that $Z\left(u_{n+k}\right)=z^{k}\left[\bar{u}(z)-u_{0}-u_{1} z^{-1}-u_{2} z^{-2}-\cdots-u_{k-1} z^{-(k-1)}\right]$.
(b) Solve the difference equation $u_{n+2}+2 u_{n+1}+u_{n}=n$ given that $u_{0}=0, u_{1}=0$, using Z-transforms.

