

Code: 9ABS105

R09

B.Tech I Year (R09) Supplementary Examinations December/January 2015/2016 MATHEMATICAL METHODS

(Common to CSE, ECE, EEE, EIE, ECM, E.Con.E, IT & CSS)

Time: 3 hours

Max. Marks: 70

Answer any FIVE questions

All questions carry equal marks

- Verify Cayley Hamilton theorem for the matrix $A = \begin{bmatrix} 3 & 1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$ and hence find A^{-1} . 1
- Reduce the quadratic form $3x_1^2 + 3x_2^2 + 3x_3^2 + 2x_1x_2 + 2x_1x_3 2x_2x_3$ to canonical form by orthogonal 2 transformation and hence find the rank, index, signature and nature of the quadratic form.
- 3 (a) Use Largrange formula to calculate f(3) from the following table.

Х	0	1	2	4	5	6	
(x)	1	14	15	5	6	19	
			3				

- Find a real root of $f(x) = x^3 4x 9 = 0$ by bisection method. (b)
- 4
- Evaluate $\int_{0}^{1} \sqrt{1 + x4} \, dx$ using Simpson's $\frac{3}{8}$ rule. Use Runge-Kutta method of 4th order to solve $\frac{dy}{dx} = 1 + y^2$, y(0) = 0 on the interval $0 \le x \le 0.5$ with h = 0.1. 5
- (a) Expand $f(x) = x \sin x$, in $0 < x < 2\pi$ as a Fourier series. 6
 - (b) If F(s) is the complex Fourier transform of f(x), then prove that $F\{f(ax)\} = \frac{1}{a}F\left(\frac{s}{a}\right)$, $a \neq 0$.
- A homogeneous rod of conducting the material of length 100 cm has its ends kept at zero 7 Temperature and the temperature initially is $u(x, 0) = \begin{cases} x, & 0 \le x \le 50\\ 100 - x, & 50 \le x \le 100 \end{cases}$. Find the temperature u(x,t) at any time.
- (a) If $Z(u_n) = \overline{u}(z)$, Prove that $Z(u_{n+k}) = z^k [\overline{u}(z) u_0 u_1 z^{-1} u_2 z^{-2} \dots u_{k-1} z^{-(k-1)}]$. 8
 - (b) Solve the difference equation $u_{n+2} + 2u_{n+1} + u_n = n$ given that $u_0 = 0$, $u_1 = 0$, using Z-transforms.