Code: 13A54101

B.Tech I Year (R13) Supplementary Examinations December/January 2015/2016

MATHEMATICS - I
(Common to all branches)
Time: 3 hours
PART - A
(Compulsory Question)
Answer the following: ($10 \times 02=20$ Marks)
(a) Eliminate C from the equation $y=C e^{\sin ^{-1} x}$
(b) Solve $\frac{d y}{d x}+(\cot x) y=\cos x$.
(c) Find C.F $y^{\prime \prime \prime}-7 y^{\prime \prime}+14 y^{\prime}-8 y=0$.
(d) Find Particular Integral of $\left(D^{2}+5 D+6\right) y=e^{x}$.
(e) If $x=r \cos \theta, y=r \sin \theta$ find $\frac{\partial(x, y)}{\partial(r, \theta)}$.
(f) Explain Stationary points and Stationary Values.
(g) Find the Laplace Transform of $e^{-3 t}(2 \cos 5 t-3 \sin 5 t)$.
(h) Find $L^{-1}\left[\log \frac{1+s}{s^{2}}\right]=----$
(i) Find Div \bar{f} where $\bar{f}=\operatorname{grad}\left(x^{3}+y^{3}+z^{3}-3 x y z\right)$.
(j) State Green's theorem in xy-plane.

PART - B
(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

2 (a) Solve $\left(1+y^{2}\right)+\left(x-e^{\tan ^{-1} y}\right) \frac{d y}{d x}=0$
(b) A body kept in air with temperature $25^{\circ} \mathrm{C}$ cools from $140^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ in 20 min . Find when the body cools down to $35^{\circ} \mathrm{C}$.

OR
3 (a) Solve $\left(D^{2}+a^{2}\right) y=$ tanax by method of variation of parameter.
(b) Solve $y^{\prime \prime}+y=e^{-x}+x^{3}+e^{x} \sin x$

UNIT - II

4 (a) Verify whether the following functions are functionally dependent, if so, find the relation between them $\mathrm{u}=\frac{x+y}{1-x y}, \mathrm{v}=\operatorname{Tan}^{-1} \mathrm{x}+\operatorname{Tan}^{-1} \mathrm{y}$.
(b) Examine the following function for extreme values $f(x, y)=x^{4}+y^{4}-2 x^{2}+4 x y-2 y^{2}$

OR

A rectangular box open at the top is to have volume of 32 cubic feet. Find the dimensions of the box requiring least material for its construction.

UNIT - III

Trace the curve $x^{3}+y^{3}=3 a x y$
OR
Find the length of arc of the parabola $y^{2}=4 a x$ cut off by the line $3 y=8 x$.

Code: 13A54101

UNIT - IV
8 (a) Find the Laplace Transform of the following:
(i) $\frac{\sin 2 t}{t}$.
(ii) $\frac{e^{-4 t} \sin 3 t}{t}$.
(b) Find the inverse Laplace Transform of $\frac{s}{\left(s^{2}+a^{2}\right)^{2}}$ using Convolution theorem.

OR

Solve by Laplace Transform method. $y^{\prime \prime}-3 y^{\prime}+2 y=4$, where $y(0)=2 ; y^{\prime}(0)=3$.

UNIT - V

Verify Stoke's theorem for $F=\left(x^{2}+y^{2}\right) i-2 x y j$ taken around the rectangle bounded by the lines $x= \pm a, y=0, y=b$.

OR

11 (a) Prove that div. $\left(\operatorname{grad} r^{m}\right)=m(m+1) r^{m-2}$.
(b) Find the directional derivative of $f=x y+y z+z x$ in the direction of vector $i+2 j+2 k$ at the point (1, 2, 0).

