B.Tech I Year (R13) Supplementary Examinations December/January 2015/2016

MATHEMATICS - II

(Common to EEE, ECE, EIE, CSE and IT)

Time: 3 hours

Max. Marks: 70

PART - A

(Compulsory Question)

1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$

- (a) Define Rank.
- (b) Find the Eigen values of $\begin{pmatrix} 1 & 2 & 1 \\ 0 & -5 & 0 \\ 1 & 8 & 1 \end{pmatrix}.$
- (c) $\int_{0}^{x} \frac{x}{2+x} dx$ by using Simpson's 3/8 rule.
- Use Newton's Method to find the only real root of the equation $x^3 x 1 = 0$ in two approximations. (d)
- What is the example of the Hermitian matrix?
- Solve $\frac{dy}{dx} = y \cos x$, y(0) = 1 using Taylor series method. (f)
- What is the formula for half range cosine series? (g)
- Inverse Z transform of $\frac{1}{(z-2)(z-3)}$, |z| > 3. (h)
- Form the partial differential equation from $z = f(x^2 y^2)$. (i)
- Eliminate arbitrary constants in $(x a)^2 + (y b)^2 = k^2$, where a, b are constants. (j)

PART - B

(Answer all five units, 5 X 10 = 50 Marks)

Find P and Q such that the Normal form of A= 30 then find Rank of A. 2

Verify Cayley Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$. And also find the A^4 . 3

UNIT - II

Finding the root of $f(x) = e^{-x}(3.2 \sin(x) - 0.5 \cos(x))$ that lies between x = 3 and x = 4, by using Bisection 4 method.

OR

- Evaluate $\int_{0}^{\infty} \frac{dx}{1+x^2}$ by using: 5
 - Trapezoidal rule. (a)
 - Simpson's 1/3 rule. (b)

Contd. in page 2

www.FirstRanker.com

UNIT - III

Using Euler's method, find an approximate value of y corresponding to x=0.1, given $\frac{dy}{dx} = \frac{y-x}{y+x}$ 6 $y = 1 \ at \ x = 0.$

Find the Fourier series of $f(x) = x^3$ in $((-\pi, \pi))$. 7

8

Find the Fourier transform of f(x) = $\begin{cases} \frac{1}{2a} & if |x| \le a \\ 0 & if |x| > a \end{cases}$

Solve $\boldsymbol{U}_{\scriptscriptstyle n+2} + 2\boldsymbol{U}_{\scriptscriptstyle n+1} + \boldsymbol{U}_{\scriptscriptstyle n} = \boldsymbol{n}$ with $\boldsymbol{U}_{\scriptscriptstyle 0} = \boldsymbol{U}_{\scriptscriptstyle 1} = \boldsymbol{0} \, \text{using Z-Transforms.}$ 9

UNIT - V

Find the Partial differential equation of all sphere whose centre lie on Z-axis and given by equation 10 $x^2 + y^2 + (z - a)^2 = b^2$, and b being constant.

By using method of separation of variables solve the partial differential equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial u^2}{\partial x^2}$. 11

partial

com
www.FirstRanker.com