

B.Tech IV Year I Semester (R09) Regular & Supplementary Examinations December 2015

OPTIMIZATION TECHNIQUES

(Electrical & Electronics Engineering)

Time: 3 hours Max. Marks: 70

Answer any FIVE questions All questions carry equal marks

- 1 (a) Explain the following with suitable examples:
 - (i) Design vector. (ii) Objective function. (iii) Constraints.
 - (b) Write brief notes on formulation of optimization problem.
- 2 (a) What is the significance of Lagrange multiplier?
 - (b) Using Lagrange multiplier method, solve the following problem.

Minimize
$$f(x) = 1/2(x_1^2 + x_2^2 + x_3^2)$$

Subject to constraints

$$g_1(x) = x_1 - x_2 = 0$$

 $g_2(x) = x_1 + x_2 + x_3 - 1 = 0$

- 3 (a) State four applications of linear programming problem.
 - (b) Solve the following problem by simplex method.

Maximize
$$Z = 2x_1 + 6x_2$$

Subject to constraints

$$-x_1 + x_2 \le 1$$
$$2x_1 + x_2 \le 2$$
$$x_1, x_2 \ge 0$$

4 (a) Solve the following transportation problem for the costs given below.

	D_1	D_2	D_3	D_4	Capacity
O_1	1	2	3	4	6
O_2	4	3	2	0	8
O_3	0	2	2	1	10
Demand	4	6.	8	6	

- (b) Explain the applications of North West corner rule with an example.
- 5 Minimize $f(x) = 0.65 [0.75/(1 + x^2)] 0.65x \tan^{-1}(1/x)$ in the interval [0, 3] by the Fibonacci method using n = 6.
- 6 Write short notes on:
 - (a) Univariate method.
 - (b) Powell's method.
- 7 Minimize $f(x) = 3x_1^2 + 4x_2^2$ subject to $x_1 + 2x_2 = 8$. Using an exterior penalty function method with the calculus method of unconstrained minimization.
- 8 (a) State the principle of optimality in dynamic programming.
 - (b) Find the value of max $(y_1 y_2 y_3)$ subject to $y_1 + y_2 + y_3 = 15$ and $y_1, y_2, y_3 \ge 0$.