## R09

Code: 9A04603
B.Tech IV Year I Semester (R09) Regular \& Supplementary Examinations December 2015

## DIGITAL SIGNAL PROCESSING

(Electrical \& Electronics Engineering)
Time: 3 hours
Max. Marks: 70
Answer any FIVE questions
All questions carry equal marks
*****
1 Determine the sequence corresponding to following frequency domain representation:

$$
\begin{aligned}
X\left(e^{j \omega}\right) & =1 & & |\omega| \leq W \quad \text { or }-W \leq \omega \leq W \\
& =0 & & W \leq \omega \leq \pi
\end{aligned}
$$

2 (a) Determine the DFT of 4-point sequence $x(n)=\{0,1,2,3\}$.
(b) Find inverse DFT of $X(k)=\{4,1-j,-2,1+j\}$

3 Explain Radix 2 DIF-FFT algorithm in detail. Explain how calculations are reduced.
4 (a) State and prove time shifting property of $z$-transform.
(b) Determine z-transform, ROC and pole-zero locations of:

$$
x(n)=\alpha^{n} u(n)+\beta^{n} u(-n-1)
$$

5 (a) Explain the features of Butterworth approximation
(b) Discuss the location of pole for Butterworth filter.

6 Design highpass filter using hamming window with a cutoff frequency of $1.5 \mathrm{rad} / \mathrm{sec}$ and $\mathrm{N}=9$.
Consider:

$$
\begin{aligned}
\mathrm{H}_{\mathrm{d}}\left(\mathrm{e}^{\mathrm{j} \omega}\right) & =\mathrm{e}^{-\mathrm{j} \alpha \omega} \\
& =0
\end{aligned} \quad \begin{aligned}
& \omega_{\mathrm{c}} \leq|\omega| \leq \pi \\
& \text { otherwise }
\end{aligned}
$$

Also find $\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)$.
$7 \quad$ Consider $\mathrm{x}(\mathrm{n})=$ tri $(\mathrm{n} / 6)$.Sketch the following signals and describe how they differ.
(a) $x(3 n / 2)$, using step interpolation followed by decimation.
(b) $x(3 n / 2)$, using decimation followed by step interpolation.

8 Write short notes on the following:
(a) Entropy.
(b) Single Echo filter.
(c) Musical sound processing.

