R07

Code: R7210201

B.Tech II Year I Semester (R07) Supplementary Examinations December 2015

MATHEMATICS - III

(Common to EEE, ECE, EIE, E.Con.E & ECC) (For 2008 regular admitted batch only)

Time: 3 hours Max. Marks: 80

Answer any FIVE questions All questions carry equal marks

- 1 (a) Show that $J_n(x) = \frac{1}{\pi} \int_0^{\pi} \cos{(n\theta x\sin{\theta})}$, n being an integer.
 - (b) $J_0(x) = \frac{1}{\pi} \int_0^{\pi} \cos(x \sin\theta) d\theta = \frac{1}{\pi} \int_0^{\pi} \cos(x \cos\theta) d\theta$.
- 2 (a) Show that $u = e^{-x}(xsiny ycosy)$ is harmonic.
 - (b) Find the regular function whose imaginary part is $\log(x^2 + y^2) + x 2y$.
- 3 (a) Find all solutions of $e^z = 3 + 4i$.
 - (b) Find all principle values of $(1 + i\sqrt{3})^{(1+i\sqrt{3})}$.
- 4 (a) Using Cauchy's integral formula, calculate $\int_C \frac{z}{(z-1)(z-2)^2} dz$ where c: |z-2| = 1/2.
 - (b) Evaluate $\int_C z^{-2} dz$ where C is (i) |z| = 1.
- Find the Taylor's expansion of $f(z) = \frac{2z^3 + 1}{z^2 + 3}$ about the point (i) z = i (ii) z = 1.
- Find the residues of $\frac{z^2-2z}{(z+1)^2(z^2+1)}$.
- 7 (a) Prove that all the zeros of $z^7 5z^3 + 12 = 0$ lie between the circles $C_1: |z| = 1$ and $C_2: |z| = 2$.
 - (b) State and prove fundamental theorem of algebra.
- 8 Find and plot the image of the regions:
 - (i) x > 1.
 - (ii) y > 0.
 - (iii) $0 < y < (\frac{1}{2})$.
