Code: R7210204

B.Tech II Year I Semester (R07) Supplementary Examinations December 2015
 SWITCHING THEORY \& LOGIC DESIGN

(Common to EEE, EIE, E.Con.E \& ECC)
(For 2008 regular admitted batch only)
Time: 3 hours
Max. Marks: 80

Answer any FIVE questions

All questions carry equal marks

1 (a) If $32_{10}=x_{2}=y_{8}$, then determine x and y.
(b) Explain about 1's complement and 2's complement of a number.

2 (a) Prove that $a+a^{\prime} b=a+b$.
(b) Convert the following SOP into POS:

$$
F=A B C+B C D+A C^{\prime} .
$$

(c) Implement the following using universal gates:
(i) $\left(A^{\prime}+C\right)\left(A C^{\prime}+B C\right)$.
(ii) $A B^{\prime}+\left(B^{\prime}+C^{\prime}\right) A^{\prime}$.

3 (a) Simplify the following using Karnaugh map:

$$
F=\Sigma m(1,2,3,4,5,7,9) .
$$

(b) What is a tabulation method? State its advantages compared to Karnaugh map by taking an example.

4 (a) Design a Grey code to binary converter and realize it.
(b) Draw and explain the logic diagram of a 2 line to 4 line decoder - DE multiplexer using NOR gates only.

5 (a) Implement the following using PLA $f(a, b, c, d)=\Sigma m(0,2,6,7,8,9,12,13,14)$.
(b) What are different PLD's? Explain them.

6 (a) Convert JK flip-flop into SR flip-flop.
(b) Explain about master slave flip-flop.
(c) Explain about the Johnson counter.

7 (a) Explain about finite state machines and enumerate their capabilities and limitations.
(b) Enumerate the steps in the conversion of Mealy machine into Moore machine.

8 (a) Explain the multiplexer method of implementing ASM charts.
(b) Explain the control subsystem implementation of weighting machine.

