R07

Code: R7210402

B.Tech II Year I Semester (R07) Supplementary Examinations December 2015

PROBABILITY THEORY & STOCHASTIC PROCESSES

(Common to ECE & ECC)

(For 2008 Regular admitted batch only)

Time: 3 hours Max. Marks: 80

Answer any FIVE questions All questions carry equal marks

- 1 (a) Define the term "independent events". State the conditions for independent of:
 - (i) Any two events.
 - (ii) Any three events A, B and C.
 - (b) Explain in detail about total probability.
- 2 (a) The sample space for an experiment is $S = \{0, 2, 4, 6\}$. List all the possible values of the following random variable:

(i)
$$X = 2S$$
.

(ii)
$$X = 2S^2 + 1$$
.

(iii)
$$X = \frac{1}{2S+1}$$
.

- (b) Briefly explain about Rayleigh density function.
- 3 (a) Explain the following terms:
 - (i) Skew.
 - ii) Moments about the origin.
 - (b) Describe briefly about the transformation of a discrete random variable.
- 4 (a) Two independent random variables X and Y have densities $f_X(x) = 5 e^{-5x} u(x)$ and $f_Y(y) = 2 e^{-2y} u(y)$. Find the density of the sum Z = X + Y.
 - (b) Explain the properties of conditional density function.
- 5 (a) Explain the linear transformations of Gaussian random variables.
 - (b) Statistically independent random variables X and Y have moments $m_{10} = 2$, $m_{20} = 16$, $m_{02} = 30$, $m_{11} = -10$. Find the moment μ_{22} .
- 6 (a) Explain the classification of random processes.
 - (b) Find the auto correlation function of a random process with periodic sample function $p(t) = A \sin^2\left(\frac{2\pi t}{T}\right)$ Where A and T>0 are constants.
- 7 (a) Define power spectral density. Prove that power density spectrum is real and even function in ω .
 - (b) Explain any four properties of cross-power density spectrum.
- 8 (a) Explain the following terms:
 - (i) Resistive noise source. (ii) Effective noise temperature. (iii) Noise figure.
 - (b) If X(t) is a differentiable WSS random process and $Y(t) = \frac{d}{dt} X(t)$. Find an expression for $S_{YY}(\omega)$

and $R_{YY}(\tau)$.